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Abstract
This paper proposes the Love Evolution Algorithm (LEA), a novel evolutionary 
algorithm inspired by the stimulus–value–role theory. The optimization process 
of the LEA includes three phases: stimulus, value, and role. Both partners evolve 
through these phases and benefit from them regardless of the outcome of the rela-
tionship. This inspiration is abstracted into mathematical models for global optimi-
zation. The efficiency of the LEA is validated through numerical experiments with 
CEC2017 benchmark functions, outperforming seven metaheuristic algorithms as 
evidenced by the Wilcoxon signed-rank test and the Friedman test. Further tests 
using the CEC2022 benchmark functions confirm the competitiveness of the LEA 
compared to seven state-of-the-art metaheuristics. Lastly, the study extends to real-
world problems, demonstrating the performance of the LEA across eight diverse 
engineering problems.  Source codes of the LEA  are publicly available at  https://​
ww2.​mathw​orks.​cn/​matla​bcent​ral/​filee​xchan​ge/​159101-​love-​evolu​tion-​algor​ithm.

Keywords  Optimization · Metaheuristic · Evolutionary algorithm · Love Evolution 
Algorithm

1  Introduction

Optimization techniques are widely employed to optimize the design of real-
world problems to raise the efficiency of systems, human resources, etc. However, 
the complexity of most practical problems, characterized by numerous design 
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variables and constraints, often exceeds the capability of classical optimization 
algorithms [1, 2]. Numerous metaheuristic algorithms are designed to compre-
hensively explore the search space, utilizing practical information to circumvent 
local optimization pitfalls. Additionally, metaheuristic algorithms offer signifi-
cant advantages, including gradient-free operations, reduced computational com-
plexity, and enhanced flexibility. With these advantages, metaheuristic algorithms 
have been widely used in many fields of optimization problems and have been 
paid more and more attention by many scholars [3].

Metaheuristic algorithms have two most important behaviors: exploration and 
exploitation [4]. In the early iterative phase, algorithms prefer to search the entire 
solution space extensively, which is related to avoiding local optima. If over-
explored, the quality of the solution will be poor. Conversely, if over-exploited, it 
can make the algorithms vulnerable to local optima. Therefore, achieving a satis-
factory solution necessitates a good balance between exploration and exploitation.

Recently, the application of metaheuristic algorithms to highly complex prob-
lems has seen a substantial increase. Unlike traditional optimization algorithms, 
metaheuristic algorithms are gradient-free optimization techniques for solv-
ing near-optimal solutions, which can solve black-box optimization problems 
similar to machine learning algorithms with hyperparametric optimization [5]. 
Metaheuristic algorithms are considered to be of greater research value due to the 
consideration of its irreplaceable advantages in certain problems, like black-box 
optimization problems. As posited by the no free lunch theorem [6], it is acknowl-
edged that no individual metaheuristic algorithm is universally effective for all 
optimization problems. In other words, the different characteristics exhibited by 
different problems make the metaheuristic algorithms behave differently during 
the optimization process, which results in varied performance of metaheuristic 
algorithms; some may excel in certain problem classes while faltering in others. 
Although numerous metaheuristic algorithms are proposed nowadays, we still 
need to develop new metaheuristic algorithms that provide new search processes 
to adapt to possible problems to be solved.

The proposed Love Evolution Algorithm (LEA) is an evolutionary algorithm 
inspired by the stimulus–value–role (SVR) theory [7]. Drawing from the SVR 
theory, the search process of the LEA encompasses three distinct phases: the 
stimulus phase, the value phase, and the role phase. The greatest novelty of LEA 
lies in its unique search operations, including inter-variable convolution, multi-
plication, and division for crossover and mutation. In addition, the proposed LEA 
is verified to be highly competitive using the CEC2017 and CEC2022 benchmark 
functions. Eight real-world optimization problems were used to validate the capa-
bility of the LEA to solve practical problems.

The main contributions of this paper are as follows:

(1)	 Proposed an evolutionary algorithm: the Love Evolution Algorithm.
(2)	 Tested the proposed algorithm on 41 benchmark functions.
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(3)	 Verified the competitiveness of the proposed algorithm in comparison with 
strong metaheuristic algorithms.

(4)	 Proposed algorithm was used to solve eight real-world optimization problems.

The structure of the remainder of this paper is as follows: Related studies on 
metaheuristic algorithms are presented in Sect. 2. Section 3 provides a detailed intro-
duction to the proposed LEA. Section 4 tests and analyzes the LEA on CEC2017 
and CEC2022 benchmark functions. In Sect.  5, the LEA is applied to eight real-
world optimization problems. Section 6 is the conclusion of this paper and the future 
research direction.

2 � Related studies

2.1 � Classification of metaheuristic algorithms

There are hundreds of metaheuristic algorithms, most inspired by nature. Among the 
many algorithms, the swarm intelligence class has the largest number of algorithms 
[8]. Generally, these algorithms are bifurcated into two primary categories: single-
solution-based and population-solution-based metaheuristics. The classification of 
the algorithms is given in Fig. 1.

Current single-solution-based metaheuristic algorithms include the simulated 
annealing (SA) [9], the tabu search (TS) [10], the guided local search (GLS) [11], 
the iterated local search (ILS) [12], the random search (RS) [13], the variable neigh-
borhood search (VNS) [14], and the large neighborhood search (LNS) [15].

Fig. 1   Classification of metaheuristic algorithms
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Population-solution-based metaheuristics are typically categorized into four 
distinct groups because of the different search methods, i.e., evolution-based 
algorithms, swarm-based algorithms, physics/chemistry-based algorithms, and 
mathematics-based algorithms.

Evolution-based algorithms draw inspiration from the genetic evolution of 
organisms. Compared with traditional optimization algorithms such as calculus-
based methods and exhaustive methods, these algorithms are a mature global 
optimization method with high robustness and wide applicability. It has the char-
acteristics of self-organization, self-adaptation, and self-learning, which can 
effectively deal with complex problems that are difficult to be solved by tradi-
tional optimization algorithms regardless of the nature of the problem. Genetic 
algorithm (GA) [16] is an optimization model that simulates Darwin’s theory of 
biological evolution, which originates from the simulation of behaviors such as 
chromosomal crossover variation, acting in the genetic space where information 
is encoded. Such algorithms also include the evolutionary programming (EP) 
[17], the evolutionary strategy (ES) [18], the genetic programming (GP) [19], the 
differential evolution (DE) [20], the gene expression programming (GEP) [21], 
the biogeography-based optimization (BBO) [22], the differential search (DS) 
[23], the Wildebeests herd optimization (WHO) [24], and the human felicity 
algorithm (HFA) [25].

Swarm intelligence-based algorithms are a common algorithm in computing 
intelligence. These algorithms, for instance, simulate the natural behavior of fish, 
birds, wolves, and bacteria in nature. They utilize information exchange and coop-
eration among groups, optimizing through simple yet limited interactions among 
individuals. In 1992, M. Dorigo et al. proposed the ant colony optimization (ACO) 
[26] by simulating an ant colony to choose the shortest path from an anthill to a 
food source for obstacle avoidance. In 1995, J. Kennedy et al. proposed the particle 
swarm optimization (PSO) [27] inspired by the predatory behavior of bird flocks. 
Others have since proposed the bacterial foraging (BF) algorithm [28], the moth 
flame optimization (MFO) [29], the whale optimization algorithm (WOA) [30], the 
spotted hyena optimizer (SHO) [31], the butterfly optimization algorithm (BOA) 
[32], the Harris hawk optimization (HHO) [33], the tunicate swarm algorithm (TSA) 
[34], the African vultures optimization algorithm (AVOA) [35], the snake optimizer 
(SO) [36], the white shark optimizer(WSO) [37], the dwarf mongoose optimization 
(DMO) [38], the flying foxes optimization (FFO) [39], the escape bird search (EBS) 
[40], the FOX optimizer (FOX) [41], the walrus optimizer (WO) [42], and the snow 
geese algorithm (SGA) [43].

Physics/chemistry-based algorithms are inspired by the major physics and chem-
istry rules found in the universe. These rules usually constrain the interaction of 
searching individuals in such methods. Moreover, most of these laws are related to 
gravity, electromagnetic force, chemical reaction, etc. Examples of these algorithms 
include the Big Bang–Big Crunch (BBBC) [44], the gravitational search algorithm 
(GSA) [45], the chemical reaction optimization (CRO) [46], the artificial chemical 
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reaction optimization algorithm (ACROA) [47], the black hole (BH) algorithm [48], 
the multi-verse optimizer (MVO) [49], the thermal exchange optimization (TEO) 
[50], the Archimedes optimization algorithm (AOA) [51], the equilibrium opti-
mizer (EO) [52], the string theory algorithm (STA) [53], and the atomic orbit search 
(AOS) [54].

Mathematics-based algorithms are a new type of metaheuristic algorithms that 
have been gradually proposed in recent years for classification. It is not inspired by 
the complex group life of species or some difficult physical phenomena like other 
metaheuristic algorithms but is mainly inspired by the arithmetic laws or some basic 
mathematical formulas in the field of mathematics. For example, sine–cosine algo-
rithm (SCA) [55], proposed by Seyedali Mirjalili in 2016, enables each individual 
to adjust the direction of motion and thus search the whole space according to the 
fluctuation changes of sine and cosine functions, which enables effective global 
exploration. In recent years, scholars have also proposed the gradient-based opti-
mizer (GBO) [56], the Runge–Kutta optimizer (RUN) [57], the arithmetic optimiza-
tion algorithm (AOA) [58], the weighted mean of vectors (INFO) algorithm [59], 
the Lévy flight distribution (LFD) [60], the PID-based search algorithm (PSA) [61], 
and the cubature Kalman optimizer (CKO) [62].

2.2 � Basic elements of metaheuristic algorithms

The solution process of metaheuristic algorithms is usually divided into initializa-
tion and iterative optimization. The initialization phase usually consists of initial-
izing the parameters, creating a population and a vector containing the values of 
the objective function. Moreover, the iterative optimization phase consists mainly 
of selecting guide individual, searching (exploring and exploiting), and updating the 
population. Note that most of these descriptions are for population-solution-based 
metaheuristic algorithms.

There are many ways to initialize the population, the most common method is to 
initialize it randomly in the search space using random numbers obeying a uniform 
distribution. In addition, initializing the population by chaotic map [63] is an effec-
tive improvement, which usually leads to a more even distribution of the popula-
tion. A more comprehensive description of population initialization methods can be 
found in the literature [64].

Once the population has been initialized, selection of guide individuals generally 
begins. Selection methods used by metaheuristic algorithms can be generally cat-
egorized into three groups: random selection methods, probabilistic selection meth-
ods, and greedy selection methods. In addition, fitness–distance balance (FDB) [65] 
has been proposed as a greedy selection method in recent years and has successfully 
improved many algorithms. In the face of constrained optimization problems, these 
methods mentioned above will not consider whether the best individual violates the 
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constraints when choosing the guided individual. To solve this problem well, Burcin 
et al. proposed the fitness–distance–constraint-based guide selection method [66].

The search operation of different algorithms varies because of the design of 
the formulas. In general, many strategies are employed to balance the exploration 
and exploitation of the algorithm. A popular strategy is to use Lévy flight [67] to 
increase the possibility of the algorithm jumping out of the local optimal solutions 
and drive the algorithm to explore. In addition, random walk [68], adaptive weight-
ing [69], double learning [70], etc. are also used to improve search quality. There is 
also linear population size reduction [71] mechanism in population size.

In metaheuristic algorithms, the updating mechanism of the population considers 
only the fitness or directly retains the new individuals to the next generation. For exam-
ple, the GBO [56] retains individuals with good fitness value. Besides, the PSA [61] 
directly retains all newly produced individuals into the next generation. These methods, 
while simple and commonly applied, may suffer from the problem of premature con-
vergence of the algorithm due to improper selection of individuals. Surprisingly, the 
natural survivor method (NSM) [72] proposed by Hamdi Tolga Kahraman et al. avoids 
premature convergence of algorithms to some extent. NSM calculates scores that repre-
sent an adaptation of an individual to nature to identify survivors, discarding the greedy 
survival process based on fitness values.

3 � Love Evolution Algorithm

This section focuses on the inspiration, mathematical model, and pseudocode of the 
proposed algorithm. A theoretical analysis of time complexity and space complexity is 
also given.

3.1 � Inspiration

3.1.1 � Stimulus‑value‑role theory

Falling in love is an intimate relationship that a person is able to establish autono-
mously, voluntarily and freely in the course of his or her life, and it is an expression of 
adoration between people of the opposite or the same sex. An influential psychological 
theory of relationships was proposed by the American psychologist Murstein in 1970: 
the stimulus–value–role (SVR) theory [7]. SVR theory divides falling in love (marriage 
choice) into three phases, which are the stimulus phase, the value phase, and the role 
phase. The stimulus phase includes value satisfaction through visual, auditory, and non-
interactive means. The value phase consists of values appreciated through verbal inter-
action. The role phase involves the couple’s ability to function in mutually assigned 
roles.

In every relationship, whether it fails or succeeds, both partners change to a greater 
or lesser extent. This change may be positive or negative. However, it is undeniable 
that on the road to finding love, we have more or less progressed in terms of our 
minds, perceptions and so on. The SVR theory provides an important perspective and 
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analytical path for us to explain meeting–loving–getting along. It is also enlightened 
that the process of falling in love bears some similarity to the optimization process of 
the metaheuristic algorithm.

3.1.2 � Abstractions and metaphors

Variable Different people have different temperaments, personalities, hobbies and so 
on. In this paper, these are uniformly called the characteristics of a person. Then, a 
certain characteristic is abstracted as a variable of a certain dimension.

Candidate solution Obviously, the happiness of both partners in the relationship 
process is closely related to these characteristics. Therefore, the entire set of charac-
teristics that a person possesses is abstracted into a candidate solution.

Objective function value The combination of these characteristics affects all 
aspects of a person and determines a person’s happiness. Thus, the happiness degree 

Fig. 2   Structure of the optimization process
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of a particular person is abstracted as the objective function value of a particular 
candidate solution.

The best solution In the course of falling in love, people’s characteristics pro-
gress. Thus, the characteristics of the best people in history are metaphorically used 
as the best solution. Then, a particular best characteristic can be likened to a particu-
lar variable of the best solution.

Optimization process Inspired by SVR theory, the optimization process of the 
proposed algorithm is divided into three phases: stimulus phase, value phase, and 
role phase. Inevitably, breakups will occur during these three phases. After the 
breakup, both partners will reflect and improve. This situation is abstracted as reflec-
tion operation. The structure of the optimization process is shown in Fig. 2.

3.2 � Mathematical model and algorithm

3.2.1 � Initialization

The optimization problem usually consists of a set of decision variables, constraints 
and an objective function. It may be assumed that the number of decision variables 
is d and the upper and lower bounds of the variables are � and � , respectively (1 
row and d columns). The maximum number of function evaluations (MaxFEs) is 
denoted as T  . Since the number of people in love is two, the number of people in the 
population should be an even number. This does not prevent optimization, so it is 
reasonable to specify an even number of people n for this algorithm. The population 
at the initial moment � is

where � is a matrix of n rows and d columns composed of random numbers between 
0 and 1. Then � is a matrix of n rows and d columns. Its matrix form is

Taking the minimization problem as an example, the happiness degree of each 
person is � . The smaller the � , the happier people are. Then, the characteristics of 
the best people in history is defined as

(1)� = (� − �) ⋅ � + �,

(2)� =

⎛
⎜⎜⎜⎜⎝

x1,1 x1,2 ⋯ x1,d−1 x1,d
x2,1 x1,2 ⋯ x2,d−1 x2,d
⋮

xn−1,1

⋮

xn−1,2

⋱

⋯

⋮

xn−1,d−1

⋮

xn−1,d
xn,1 xn,2 ⋯ xn,d−1 xn,d

⎞
⎟⎟⎟⎟⎠
n×d

(3)� = �find(�=min (�))
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where min (⋅) is the function that takes the minimum value and find(⋅) is the function 
that gets the index of the equal values of � and min (�).

3.2.2 � Encounter

Consider the random nature of people’s acquaintance and the fact that this random-
ness may be able to increase the diversity of the proposed algorithm. A randomized 
strategy is used in the encounter, i.e., the romantic partners are generated randomly. 
The generation method is as follows

where randperm(d) denotes the random integer arrangement that generates 1 to d; 
and � and � are the indexes of the love partners � and � , respectively. Then � and � 
can be expressed as

Apparently, �i and �i are a couple, i = 1, 2,… n∕2 . In this way, the population is 
divided into two parts, i.e., � ∪ � = �.

3.2.3 � Stimulus phase

During the stimulus phase, both partners are stimulated by their respective appear-
ances, behaviors, and personalities. Understanding at this phase is generally superfi-
cial and hardly makes it possible for the respective characteristics to be influenced. 
Therefore, this phase does not involve updating of characteristics. In other words, no 
candidate solutions are updated.

However, at this phase, an acceptance degree was proposed to measure the fit 
between the partners during the stimulus phase. Since the two partners at this phase 
know each other superficially and do not have the knowledge to explore the "charac-
teristics" in depth, the acceptance degree only takes into account the degree of prox-
imity to the value of the objective function. The acceptance degree � is defined as

where �� is a vector of n∕2 rows and 1 column consisting of 0.5 to 1.5 random num-
bers; �� and �� are the happiness degrees of � and � ( n∕2 rows and 1 column), 

(4)

⎧
⎪⎨⎪⎩

� = randperm(d)

� =
�
�1, �2,… , �n∕ 2

�
� =

�
�n∕ 2+1, �n∕ 2+2,… , �n

�

(5)� = ��;� = ��

(6)

{
� = �� ⋅

(
�� −��

)
⋅
(
�� −��

)

� = �∕(max (�) +min (�) + �)
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respectively; � is a very small number greater than 0; and max (⋅) is the function that 
takes the maximum value. The �� ensures that partners with smaller differences in 
well-being are also likely to perform reflective operation and partners with larger 
differences in well-being are likely to enter the next phase. This operation favors 
diversity.

When the acceptance degree is greater than �c (called acceptance rate, equal to 
0.5), it is considered that the two partners break up and proceed to the reflection 
operation; otherwise, it is considered that the two partners continue to be in love and 
enter the value phase.

3.2.4 � Reflection operation

After the breakup, the i th couple’s reflection on the j th characteristic should be at 
the j th characteristic itself. This behavior is defined in Eq. (7).

where sA
ij
 ( sB

ij
 ) denotes the self-reflection operator of the i th � ( � ) for the j th charac-

teristic; and �A and �B are both a random number from − 1.5 to 1.5.
The enhancement of the j th characteristic may be related to other characteristics 

in addition to the j th characteristic. An inspiring example is that if a person is a 
quiet character (one characteristic), then his hobby paintings (another characteristic) 
may be landscape paintings; if the person is a fanatic character (one characteristic), 
then his hobby paintings (another characteristic) may be crazy and abstract. The for-
mula for this behavior is given in Eq. (8).

where � is called learning operator; and z and k are random integers from 1 to d.
In order to really enhance the characteristics, make both characteristics mutate on 

the basis of the best characteristics. The definition of this behavior can be obtained 
by combining Eqs. (7) to (8):

where � is called the characteristic distance and is defined in Eq. (10).

As the number of iterations increases, the candidate solutions get closer to the 
best solution, which in turn causes � to decrease gradually. This change can help 
the proposed algorithm shift from exploration to exploitation, and it may be able to 
exhibit different exploration and exploitation behaviors for different problems. This 
phase is shown schematically in Fig. 3.

(7)sA
ij
= �A

�ij

�ij + �
; sB

ij
= �B

�ij

�ij + �

(8)� =
1

2

(
�iz

�z − �z
+

�ik

�k − �k

)

(9)�ij = �j + �sA
ij
�;�ij = �j + �sB

ij
�

(10)� =
1

nd

∑
i

∑
j

‖‖‖�ij −�j
‖‖‖2 + �
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3.2.5 � Value phase

When the acceptance degree (defined in Eq. (6)) is less than 0.5, the partners enter 
the value phase. The value phase will take into account deeper thoughts and behav-
iors, which involves a change in characteristics. Equation (11) uses the convolution 
to define the convolution operator.

The convolution operator �1 , �2 , and �3 obtained from the convolution of 
[
�ij,�j

]
 

and 
[
�j,�ij

]
 can be specifically expressed as

After that, Eq.  (13) defines the depth operator to inscribe the value phase to 
understand each other deeply and change the characteristics.

(11)
[
�1,�2,�3

]
=
[
�ij,�j

]
∗
[
�j,�ij

]

(12)�1 = �j�ij; �2 = �2
j
+ �ij�ij; �3 = �j�ij

(13)�A = ‖‖�2 − �1
‖‖2; �B = ‖‖�2 − �3

‖‖2

Fig. 3   The process of the reflection operation
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At this phase, the change in the characteristics of both partners is defined in 
Eq. (14).

where �A and �B are random numbers between 0 and 1; and �A and �B are random 
numbers that obey the standard normal distribution. The value phase is shown sche-
matically in Fig. 4.

3.2.6 � Adaptation degree

After the value phase, adaptation degree � is defined in Eq. (15) to determine which 
couples are able to enter the role phase.

(14)�ij = �A�ij + �A�A; �ij = �B�ij + �B�B

(15)�i =
rp�i

d�

∑
j

‖‖‖�ij − �ij
‖‖‖2

Fig. 4   The process of the value phase
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where rp is a vector of n∕2 rows and 1 column consisting of 0.5 to 1.5 random num-
bers, and it has the same role as �� defined in Eq. (6). When �i is less than �p (called 
adaptation rate, equal to 0.5), it indicates that �i and �i are very close, at which 
point the role phase is entered. Otherwise, both partners are considered broken up 
and the reflection operation is executed.

3.2.7 � Role phase

The inspired behaviors of the role phase are assigning roles and complementing 
each other. Both partners more or less want the other to be a certain role as they 
envision it. Considering this behavior, the role operator operating on characteristics 
is defined in Eq. (16).

where h is called the convergence factor, which is defined in Eq. (17).

where hmax and hmin are convergence constants and t is the number of function evalu-
ations (FEs). From the analysis, h is a linearly decreasing function with t.

The update of the characteristics of the role stage is defined in Eq. (18).

(16)

⎧
⎪⎨⎪⎩

�i = �i ⋅ �i

�ij =
�ij −min

�
�i
�

max
�
�i
�
−min

�
�i
�
+ �

+ h

(17)h = (1 − t∕T)
(
hmax − hmin

)
+ hmin

Fig. 5   Process of the role phase
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where �A and �B are random numbers obeying the standard normal distribution.
The schematic of the role phase is shown in Fig. 5. The role of h in Eq. (16) is 

to balance exploration and exploitation. If the effect of � is ignored, �ij takes values 
between h and 1 + h . In the early stage of the iteration, the value of h is larger and 
more values greater than 1 in �i are computed. This means that the main tendency 
is to explore. As the number of iterations increases, the value of h decreases, which 
means that progressively more and more values in �i are less than 1. This implies a 
gradual shift from exploration to exploitation.

3.2.8 � Update of the population

In this paper, two formulas for the cross-boundary processing of �ij and �ij are 
given, defined in Eqs. (19) and (20).

where mod denotes the modulo operation, and mod(x, y) returns the remainder after 
x is divided by y; and � is used to prevent the upper or lower bounds from being 
equal to 0. Equation (19) retains a portion of the search information while perform-
ing transgression processing.

After a round of iterations, a new population is created (i.e., �=[�;�] ). The new 
population will completely replace the old population into the next cycle. The flow-
chart of the proposed algorithm is shown in Fig. 6. Moreover, the pseudocode of the 
algorithm is provided in Algorithm 1.

(18)�ij = �j + �A��ij; �ij = �j + �B��ij

(19)

�ij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�j +
(

�j − �j
)
mod

(

�ij,�j + �
)

�j + �
, �ij > �j

�ij, �j < �ij < �j

�j +
(

�j − �j
)
mod

(

�ij, �j + �
)

�j + �
, �ij < �j

;

�ij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�j +
(

�j − �j
)
mod

(

�ij, �j + �
)

�j + �
, �ij > �j

�ij, �j < �ij < �j

�j +
(

�j − �j
)
mod

(

�ij, �j + �
)

�j + �
, �ij < �j
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Algorithm 1   Love Evolution Algorithm

1. Initialize the population size n, the MaxFEs T and the FEs t = 0

2. Initialize the number of characteristics d, the upper boundary u, the lower boundary l, and the function F

3. Create the population X using Eq. (1) %% Create the population

4. H = F(X) %% Create the vector of happiness degree

5. Select the characteristics of the best people in history G from the population

6. while t < T %% Main loop

7. Calculate the convergence factor h using Eq. (17)

8. Population X is randomly and equally divided into A and B using Eqs. (4) to (5) % Encounter

9. Calculate the acceptance degree c using Eq. (6) % Stimulus phase

10. for i = 1:n/2

11. if ci < λc

12. for j = 1:d % Value phase

13. Update the Aij and Bij using Eqs. (12) to (14)

14. Update the Aij and Bij using Eq. (19)

15. end for
16. t = t + 1; if t > T; break; end if
17. Select the characteristics of the best people in history G from the population

18. Calculate the adaptation degree pi using Eq. (15)

19. if pi > λp

20. for j = 1:d % Reflection operation

21. Update the Aij and Bij using Eqs. (7) to (10)

22. end for
23. else % Role phase

24. Calculate the role operator ξi using Eq. (16)

25. for j = 1:d

26. Update the Aij and Bij using Eq. (18)

27. Update the Aij and Bij using Eq. (20)

28. end for

29. end if
30. t = t + 1; if t > T; break; end if
31. Select the characteristics of the best people in history G from the population

32. else
33. for j = 1:d % Reflection operation

34. Update the Aij and Bij using Eqs. (7) to (10)

35. Update the Aij and Bij using Eq. (20)

36. end for
37. t = t + 1; if t > T; break; end if
38. Select the characteristics of the best people in history G from the population

39. end if

40. end for
41. X = [A; B] %% Update the population

42. end while

43. return G
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Fig. 6   Flowchart of the proposed Love Evolution Algorithm
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3.3 � Theoretical analysis of time and space complexity

Time complexity and space complexity are two important metrics to evaluate the 
performance of an algorithm. The time complexity of the LEA is mainly influenced 
by three factors: the population size (n), the maximum number of iterations (T) and 
the number of variables (d) for solving the problem. In the proposed algorithm, the 
initialization problem requires O(nd). During the iterative process, the computation 
requires O(Tnd). Therefore, the time complexity of the LEA is O(Tnd). The spatial 
complexity of the LEA is mainly affected by the population size (n) and the number 
of variables (d) for solving the problem. In the proposed algorithm, the features of 
the stored population occupy the main memory space. Thus, the space complexity 
of the LEA is O(nd).

4 � Experimental results and discussion

The section focuses on comparing and analyzing the test results of the LEA and 
some state-of-the-art metaheuristic algorithms on the CEC2017 and CEC2022 
benchmark functions.

4.1 � Experimental setup

This study implements all algorithms using MATLAB R2023b on a computer 
with 64-bit Windows 11. The CEC2017 benchmark functions [73] are quite chal-
lenging test sets. It greatly simulates the optimization problems in the real world. 
Among them, F1 and F3 are unimodal functions, F4–F10 are multimodal functions, 
F11–F20 are hybrid functions, and F21–F30 are composition functions. The dimen-
sion is set to 50. Besides, the profiles of the CEC2017 benchmark functions are 
shown in Table 1. Moreover, there are a total of 12 single-objective test functions 
with boundary constraints in the CEC2022 benchmark functions [74]. These func-
tions are unimodal function (F1), basic functions (F2–F5), hybrid functions (F6–F8) 
and composition functions (F9–F12). The dimensions of two experiments on the 
CEC2022 benchmark functions are set to 10 and 20, respectively. In addition, the 
CEC2022 benchmark functions are described in Table 2.

To verify the superiority of the proposed algorithm, the nutcracker optimiza-
tion algorithm (NOA) [75], the golden jackal optimization (GJO) [76], the atomic 
orbital search (AOS) [54], the tunicate swarm algorithm (TSA) [34], the seagull 
optimization algorithm (SOA) [77], the Harris hawk optimization (HHO) [33], and 
the random drift particle swarm optimization (RDPSO) [78] are compared with the 
proposed LEA on the CEC2017 benchmark functions. The population size of these 
algorithms is set to 50. Furthermore, the maximum number of function evaluations 
(MaxFEs) is 500,000 (10,000* dimensions). The settings of other parameters are 
shown in Table 3.

Further, some strong algorithms are used to compare with the LEA on the 
CEC2022 benchmark functions. These algorithms are the success history-based 
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adaptive differential evolution with linear population size reduction (L-SHADE) 
[71], the adaptive L-SHADE (AL-SHADE) [79], the L-SHADE with semi-param-
eter adaptation hybrid with CMA-ES (L-SHADE-spacma) [80], the adaptive fit-
ness–distance balance-based artificial rabbits optimization (AFDB-ARO) [81], the 
fitness–distance balance-based adaptive guided differential evolution (FDB-AGDE) 
[82], the fitness–distance balance-based adaptive gaining–sharing knowledge (FDB-
AGSK) [83], and the fitness–distance balance-based phasor particle swarm opti-
mization (FDB-PPSO) [84]. L-SHADE, AL-SHADE, and L-SHADE-spacma are 

Table 1   A brief description of the CEC2017 benchmark functions

Search range: [− 100, 100]D

No. Type Function Minimum

F1 Unimodal function Shifted and rotated bent cigar function 100
F3 Unimodal function Shifted and rotated Zakharov function 300
F4 Multimodal function Shifted and rotated Rosenbrock’s function 400
F5 Multimodal function Shifted and rotated Rastrigin’s function 500
F6 Multimodal function Shifted and rotated expanded Scaffer’s F6 function 600
F7 Multimodal function Shifted and rotated Lunacek Bi_Rastrigin function 700
F8 Multimodal function Shifted and rotated non-continuous Rastrigin’s function 800
F9 Multimodal function Shifted and rotated levy function 900
F10 Multimodal function Shifted and rotated Schwefel’s function 1000
F11 Hybrid function Hybrid function 1 (N = 3) 1100
F12 Hybrid function Hybrid function 2 (N = 3) 1200
F13 Hybrid function Hybrid function 3 (N = 3) 1300
F14 Hybrid function Hybrid function 4 (N = 4) 1400
F15 Hybrid function Hybrid function 5 (N = 4) 1500
F16 Hybrid function Hybrid function 6 (N = 4) 1600
F17 Hybrid function Hybrid function 6 (N = 5) 1700
F18 Hybrid function Hybrid function 6 (N = 5) 1800
F19 Hybrid function Hybrid function 6 (N = 5) 1900
F20 Hybrid function Hybrid function 6 (N = 6) 2000
F21 Composition function Composition function 1 (N = 3) 2100
F22 Composition function Composition function 2 (N = 3) 2200
F23 Composition function Composition function 3 (N = 4) 2300
F24 Composition function Composition function 4 (N = 4) 2400
F25 Composition function Composition function 5 (N = 5) 2500
F26 Composition function Composition function 6 (N = 5) 2600
F27 Composition function Composition function 7 (N = 6) 2700
F28 Composition function Composition function 8 (N = 6) 2800
F29 Composition function Composition function 9 (N = 3) 2900
F30 Composition function Composition function 10 (N = 3) 3000
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recognized as strongly competitive algorithms. Besides, AFDB-ARO, FDB-AGDE, 
FDB-AGSK, and FDB-PPSO are strong algorithms that have been improved using 
fitness–distance balance-based guide mechanism. Comparison with these algorithms 
better demonstrates the competitive nature of the LEA. In both experiments, the 
population size is set to 50. Moreover, the MaxFEs is 1,000,000 (20 dimensions), 
respectively. The settings of other parameters are given in Table 4.

Table 2   A brief description of the CEC2022 benchmark functions

Search range: [− 100, 100]D

No. Type Function Minimum

F1 Unimodal function Shifted and full rotated Zakharov function 300
F2 Basic function Shifted and full rotated Rosenbrock’s function 400
F3 Basic function Shifted and full rotated expanded Schaffer’s F6 function 600
F4 Basic function Shifted and full rotated non-continuous Rastrigin’s function 800
F5 Basic function Shifted and full rotated levy function 900
F6 Hybrid function Hybrid function 1 (N = 3) 1800
F7 Hybrid function Hybrid function 2 (N = 6) 2000
F8 Hybrid function Hybrid function 3 (N = 5) 2200
F9 Composition function Composition function 1 (N = 5) 2300
F10 Composition function Composition function 2 (N = 4) 2400
F11 Composition function Composition function 3 (N = 5) 2600
F12 Composition function Composition function 4 (N = 6) 2700

Table 3   Parameter settings for algorithms experimented on the CEC2017 benchmark functions

Algorithm Parameter Value Algorithm Parameter Value

LEA Convergence constant hmax 0.7 AOS Maximum number of nucleus 
layers

10

Convergence constant hmin 0 Photon rate PR 0.1
Acceptance rate λc 0.5 TSA Initial speed Pmin 1
Adaptation rate λp 0.5 Subordinate speed Pmax 4

NOA Probability δ 0.05 HHO Constant of levy flight β 1.5
Probability Pa2 0.2 RDPSO Acceleration coefficient c1 2
Probability Prp 0.2 Acceleration coefficient c2 2

GJO Constant c1 1.5 Thermal coefficient α (max) 0.9
Constant of levy flight β 1.5 Thermal coefficient α (min) 0.3

SOA Frequency control parameter fc 2 Drift coefficient β 1.5
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4.2 � Performance comparison

This subsection evaluates the performance of the LEA on the CEC2017 benchmark 
functions using the average and variance metrics (Ave and Var, respectively). Also, 
the average, variance, minimum, and maximum values (Ave, Var, Min, and Max, 
respectively) are used to evaluate the competitiveness of LEAs and powerful algo-
rithms on the CEC2022 benchmark functions.

Table 4   Parameter settings for algorithms experimented on the CEC2022 benchmark functions

Algorithm Parameter Value Algorithm Parameter Value

LEA Convergence con-
stant hmax

0.73 AL-SHADE Maximum popula-
tion size

50

Convergence con-
stant hmin

0 Minimum popula-
tion size

4

Acceptance rate λc 0.5 Historical memory 
MCR

0.5

Adaptation rate λp 0.5 Historical memory 
MF

0.5

L-SHADE Maximum popula-
tion size

50 Historical memory 
size

6

Minimum popula-
tion size

4 p best rate 0.11

Historical memory 
size

5 Archive rate 2.6

p best rate 0.11 L-SHADE-spacma L rate 0.8
Archive rate 1.4 Maximum popula-

tion size
50

AFDB-ARO Parameter-less Minimum popula-
tion size

4

FDB-AGDE Parameter-less Historical memory 
size

5

FDB-AGSK Maximum popula-
tion size

50 p best rate 0.11

Minimum popula-
tion size

12 Archive rate 1.4

Knowledge factor 
pool kf

[0.1,1,0.5,1] First class percent-
age

0.5

Knowledge ratio 
pool kr

[0.2,0.1,0.9,0.9] FDB-PPSO Parameter-less
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4.2.1 � Exploitation and exploration

Unimodal functions have only one strictly optimal solution in the selected interval 
and are often used to test the exploitation capability of an algorithm. Moreover, mul-
timodal functions have a large number of locally optimal solutions in the consid-
ered interval. The number of solutions increases with the dimension of the problem. 
Therefore, the multimodal functions are commonly used to evaluate the exploration 
capability of an algorithm. The results of the LEA and the comparison algorithms 
on the CEC2017 unimodal and multimodal functions are given in Table 5.

The Ave and Var of the LEA are minimized on F1 and F3 and are much smaller 
in order of magnitude than the comparison algorithms. This indicates that the LEA 
has a strong exploitation capability. Considering the exploration capability of the 
LEA, the Ave of the LEA are ranked first on F4–F10. In terms of the Var, the LEA 
ranks 1st on F4, 3rd on F9, 4th on F7 and F10, 5th on F8, 6th on F5, and 8th on F6. 
It can be found that the Ave of the LEA has a large advantage among the competi-
tors, while the Var does not have an advantage. The reason for this phenomenon may 
be that the LEA has a greater chance of exploring ideal areas compared to its com-
petitors, which makes the LEA not superior to other algorithms in terms of variance 
under the condition of better mean value.

Table 5   Optimization results for CEC2017 unimodal and multimodal functions

Bolded+ values represent the smallest values

F Metrics LEA NOA GJO AOS TSA SOA HHO RDPSO

F1 Ave 9.39E+03 1.40E+11 3.12E+10 4.94E+06 6.52E+10 2.42E+10 3.77E+07 1.36E+11
Var 1.01E+08 1.17E+20 3.34E+19 1.67E+12 1.23E+20 3.45E+19 3.54E+13 7.18E+19

F3 Ave 3.00E+02 2.45E+05 9.51E+04 2.92E+04 1.51E+05 8.11E+04 1.70E+04 2.31E+05
Var 3.94E−09 6.59E+08 1.68E+08 3.94E+07 4.72E+08 2.47E+08 3.39E+07 3.51E+08

F4 Ave 5.18E+02 3.56E+04 4.22E+03 6.28E+02 1.41E+04 2.02E+03 6.27E+02 3.50E+04
Var 2.75E+03 1.08E+07 2.00E+06 3.63E+03 2.37E+07 1.80E+05 2.28E+03 1.36E+07

F5 Ave 7.55E+02 1.35E+03 8.92E+02 8.26E+02 1.01E+03 8.43E+02 8.83E+02 1.33E+03
Var 1.88E+03 7.14E+02 3.86E+03 1.09E+03 7.87E+02 1.91E+03 1.01E+03 9.26E+02

F6 Ave 6.22E+02 7.08E+02 6.46E+02 6.62E+02 6.87E+02 6.51E+02 6.70E+02 7.05E+02
Var 1.03E+02 2.22E+01 7.47E+01 3.02E+01 4.22E+01 5.55E+01 1.18E+01 1.11E+01

F7 Ave 1.14E+03 4.14E+03 1.37E+03 1.59E+03 1.86E+03 1.45E+03 1.77E+03 4.10E+03
Var 7.87E+03 2.75E+04 9.51E+03 1.45E+04 5.50E+03 7.15E+03 7.02E+03 2.91E+04

F8 Ave 1.05E+03 1.65E+03 1.18E+03 1.15E+03 1.34E+03 1.18E+03 1.16E+03 1.63E+03
Var 2.29E+03 1.71E+03 2.47E+03 2.34E+03 1.45E+03 2.20E+03 2.79E+03 9.72E+02

F9 Ave 1.01E+04 5.08E+04 1.54E+04 1.37E+04 2.84E+04 1.37E+04 1.96E+04 4.78E+04
Var 1.07E+07 1.66E+07 2.91E+07 4.25E+06 1.08E+07 1.31E+07 6.66E+06 1.91E+07

F10 Ave 6.84E+03 1.48E+04 9.70E+03 8.42E+03 1.23E+04 9.23E+03 8.32E+03 1.44E+04
Var 7.66E+05 1.28E+05 3.02E+06 1.30E+06 9.22E+05 1.43E+06 6.43E+05 9.96E+04
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4.2.2 � Capability of avoiding locally optimal solutions

Hybrid and composition functions are often considered the most challenging optimi-
zation problems. An algorithm is better able to avoid local optimal solutions when it 
achieves some balance between exploitation and exploration. Hence, these functions 
are often used to evaluate the capability of an algorithm to avoid local optimal solu-
tions. The optimization results of different algorithms on the CEC2017 hybrid and 
composition functions are given in Tables 6 and 7, respectively.

For the hybrid functions, the LEA ranks 1st on F12–F15, F18, and F19 in terms 
of the Ave and the Var. Besides, the LEA ranks 2nd in terms of the Ave and the Var 
on F11. In addition, on F16 and F17, the LEA is ranked 1st in terms of the Ave. On 
F20, the LEA is ranked 1st in terms of the Ave and 3rd in terms of the Var.

For the composition functions, the Ave of the LEA ranks 1st on F21 ~ F30 except 
F24. Furthermore, the Var of the LEA ranks 1st on F28–F30, 2nd on F23 and F27. 
In worse result is that the LEA is ranked 5th and 8th in F21 and F22 in terms of the 
Var, respectively. The LEA, on the other hand, has more chances of jumping out of 
the local extremes, which makes the mean of LEA relatively better but the variance 
worse. Collectively, the results of LEA on the composition functions are much better 
than its competitors.

Overall, on Ave, the optimization results of the LEA are smaller than those of 
the competitors. Moreover, the Var of the LEA is similarly smaller than those of 

Table 6   Optimization results for CEC2017 hybrid functions

Bolded values represent the smallest values

F Metrics LEA NOA GJO AOS TSA SOA HHO RDPSO

F11 Ave 1.44E+03 2.48E+04 7.33E+03 1.46E+03 1.75E+04 4.21E+03 1.43E+03 2.15E+04
Var 5.18E+03 1.24E+07 4.82E+06 3.77E+03 2.58E+07 2.04E+06 8.98E+03 8.90E+06

F12 Ave 1.18E+07 4.63E+10 7.66E+09 9.26E+07 3.66E+10 2.82E+09 5.30E+07 4.08E+10
Var 4.59E+13 4.89E+19 1.72E+19 2.48E+15 1.45E+20 2.88E+18 5.25E+14 2.87E+19

F13 Ave 1.62E+05 1.63E+10 1.05E+09 2.57E+05 1.50E+10 4.69E+08 1.35E+06 1.52E+10
Var 9.57E+09 9.18E+18 1.72E+18 1.22E+10 7.42E+19 6.50E+17 9.41E+11 5.61E+18

F14 Ave 7.86E+04 1.19E+07 9.61E+05 3.22E+05 1.64E+07 6.65E+05 3.51E+05 8.25E+06
Var 3.43E+09 1.50E+13 5.37E+11 3.17E+10 2.62E+14 5.70E+11 7.44E+10 8.70E+12

F15 Ave 5.94E+04 4.42E+09 1.26E+08 7.15E+04 2.37E+09 2.21E+07 1.82E+05 3.63E+09
Var 9.45E+08 1.33E+18 5.71E+16 4.06E+09 5.02E+18 8.41E+14 6.83E+09 8.32E+17

F16 Ave 3.49E+03 7.56E+03 3.56E+03 3.96E+03 5.13E+03 3.54E+03 4.20E+03 7.30E+03
Var 1.77E+05 1.28E+05 6.46E+04 3.99E+05 5.37E+05 2.16E+05 2.06E+05 1.11E+05

F17 Ave 3.08E+03 7.57E+03 3.41E+03 3.48E+03 5.72E+03 3.22E+03 3.55E+03 7.12E+03
Var 1.51E+05 1.40E+06 2.52E+05 1.06E+05 7.77E+06 7.58E+04 1.76E+05 3.75E+05

F18 Ave 3.79E+05 6.35E+07 8.19E+06 1.48E+06 3.56E+07 3.06E+06 3.54E+06 4.82E+07
Var 2.93E+10 4.04E+14 3.48E+14 8.21E+11 2.01E+15 1.41E+12 9.00E+12 2.31E+14

F19 Ave 2.18E+04 1.75E+09 3.78E+07 2.28E+06 1.28E+09 2.00E+06 5.50E+05 1.46E+09
Var 1.15E+08 2.53E+17 4.89E+15 1.68E+12 1.60E+18 7.25E+12 1.43E+11 9.52E+16

F20 Ave 2.92E+03 4.06E+03 3.10E+03 3.36E+03 3.64E+03 3.22E+03 3.37E+03 4.04E+03
Var 4.60E+04 3.19E+04 6.32E+04 5.38E+04 1.16E+05 1.32E+05 5.59E+04 1.59E+04
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the comparison algorithms on most composition functions. Although the LEA is 
not ranked high in terms of the Var on the F21 and F22 functions, it is in the same 
or neighboring order of magnitude with the algorithms ranked 1st. The above 
results show that the LEA has a certain capability of avoiding falling into local 
optimum.

4.2.3 � Capability of finding optimal solutions

It is generally considered that better optimization results are available when there 
is some balance between exploitation and exploration. By comparing the optimi-
zation results of LEA with other algorithms on the CEC2017 benchmark func-
tions, it can be observed that the LEA is usually ranked in the first or top position 
on the unimodal, multimodal, hybrid, and composition functions. In order to vis-
ually compare the performance of the different algorithms, boxplot is chosen to 
show the quality of the solutions produced by the different algorithms. Figures 7, 
8, and 9 give some boxplots of the different algorithms in the CEC2017 bench-
mark functions. On the F3, F4, F7, F12–F15, F18, F19, and F27–F30, the LEA 
obtains solutions of higher quality than the competitors with less fluctuation. Sta-
tistically, it is obtained that the LEA is ranked 1st on the Ave of 27 functions and 

Table 7   Optimization results for CEC2017 composition functions

Bolded values represent the smallest values

F Metrics LEA NOA GJO AOS TSA SOA HHO RDPSO

F21 Ave 2.56E+03 3.16E+03 2.65E+03 2.73E+03 2.94E+03 2.65E+03 2.82E+03 3.13E+03
Var 2.62E+03 1.19E+03 1.49E+03 4.48E+03 2.98E+03 2.43E+03 5.00E+03 1.15E+03

F22 Ave 8.11E+03 1.64E+04 1.12E+04 1.02E+04 1.46E+04 1.05E+04 1.08E+04 1.62E+04
Var 5.00E+06 7.12E+04 3.14E+06 1.36E+06 3.89E+05 1.17E+06 8.63E+05 1.07E+05

F23 Ave 3.02E+03 4.05E+03 3.19E+03 3.62E+03 3.89E+03 3.07E+03 3.66E+03 4.02E+03
Var 4.41E+03 5.69E+03 6.56E+03 3.39E+04 2.94E+04 2.23E+03 2.24E+04 5.77E+03

F24 Ave 3.22E+03 4.34E+03 3.41E+03 3.91E+03 4.13E+03 3.16E+03 4.21E+03 4.30E+03
Var 1.22E+04 1.15E+04 1.09E+04 4.18E+04 3.42E+04 2.60E+03 4.46E+04 8.66E+03

F25 Ave 3.02E+03 2.39E+04 5.38E+03 3.09E+03 8.54E+03 4.65E+03 3.13E+03 2.35E+04
Var 1.61E+03 6.43E+06 6.62E+05 6.96E+02 1.99E+06 2.56E+05 1.60E+03 3.37E+06

F26 Ave 6.32E+03 1.82E+04 8.94E+03 1.16E+04 1.48E+04 7.29E+03 7.75E+03 1.78E+04
Var 5.34E+05 1.11E+06 9.49E+05 9.71E+05 1.99E+06 3.45E+05 1.14E+07 3.81E+05

F27 Ave 3.46E+03 5.59E+03 3.89E+03 4.15E+03 4.99E+03 3.59E+03 4.07E+03 5.47E+03
Var 7.27E+03 4.37E+04 2.68E+04 8.74E+04 1.77E+05 6.97E+03 1.33E+05 2.95E+04

F28 Ave 3.29E+03 1.35E+04 5.89E+03 3.36E+03 8.19E+03 8.35E+03 3.37E+03 1.30E+04
Var 7.52E+02 5.15E+05 4.17E+05 8.33E+02 1.18E+06 1.15E+06 8.86E+02 4.12E+05

F29 Ave 4.19E+03 1.30E+04 5.39E+03 6.42E+03 1.08E+04 5.49E+03 5.28E+03 1.24E+04
Var 8.34E+04 3.44E+06 2.61E+05 5.27E+05 2.67E+07 3.64E+05 1.92E+05 2.82E+06

F30 Ave 1.57E+06 3.06E+09 2.26E+08 6.93E+07 2.53E+09 1.55E+08 1.64E+07 2.84E+09
Var 2.13E+11 2.77E+17 2.00E+16 7.75E+14 4.66E+18 3.50E+15 1.13E+13 2.72E+17
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2nd on the Ave of 2 functions, which verifies the capability of the LEA to find the 
optimal solutions.

4.2.4 � Time complexity analysis

The time complexity analysis methodology defined by the CEC2017 benchmark test 
[73] was used to evaluate the time complexity of the LEA. The steps of time com-
plexity analysis are: (1) Run the program defined by Eq. (21) 1,000,000 times when 
x = 0.55 to get the time T0; (2) time T1 is obtained by evaluating the Function 18 
using 200,000 evaluations in 50 dimensions; (3) the algorithm to be evaluated is 

Fig. 7   Boxplots of different algorithms on some CEC2017 unimodal and multimodal functions
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evaluated on the Function 18 (50 dimensions) for 200,000 to get time T2; (4) execute 
step (3) five times and take the average of the five times T2 to get Tmean; and (5) cal-
culate (Tmean − T1)/T0 and analyze.

Table 8 gives information on the computational cost of all algorithms tested on 
the CEC2017 benchmark functions. Although the computational cost of the SOA, 
the HHO and the RDPSO is much less than that of the LEA, the performance of the 
LEA in the CEC2017 benchmark set is much better than that of these three competi-
tors. Therefore, it can be concluded that although the time complexity of LEA is not 
dominant, it is acceptable with guaranteed optimization quality.

(21)x = x + x; x = x∕2; x = x × x; x =
√
x; x = ln x; x = ex; x = x∕(x + 2)

Fig. 8   Boxplots of different algorithms on some CEC2017 hybrid functions
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4.2.5 � Comparison with strong algorithms

The CEC2022 benchmark test set encompasses a series of test functions of multiple 
dimensions and complexity for testing and evaluating the capabilities of optimiza-
tion algorithms in solving real-world problems. These functions are characterized as 
nonlinear, multi-peaked, non-convex, non-derivable and highly complex, which can 
fully examine the search capability and robustness of the optimization algorithms.

Tables  9 and 10 show the optimization results of different algorithms on the 
CEC2022 benchmark functions (20 dimensions). On the unimodal function F1, 
the LEA shows a strong competitive capability. Not only does the LEA have the 
smallest Ave, but it also has the smallest Max and Min. On multimodal functions 
F2–F5, the results exhibited by the LEA and the strong comparison algorithms are 
strongly competitive. The Ave index of the LEA on F2 is even smaller than that of 

Fig. 9   Boxplots of different algorithms on some CEC2017 composition functions
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the L-SHADE, the AL-SHADE, the L-SHADE-spacma, the FDB-AGDE, and the 
FDB-PPSO. On F3, the LEA has the smallest Ave, which ranks 1st in the Min. Fur-
thermore, the Min of the LEA is ranked 1st on F2. On the hybrid functions F6 and 
F7, the result is comparable to that of the other competitors, although none of the 
Ave, the Var, the Max, and the Min of the LEA are ranked 1st. Compared to other 
competitors, LEA ranks 1st in the Ave on F8 and F9, and also reaches the smallest 
in the Max and the Min on F9 and F11. On F12, the LEA, although not 1st on the all 
metrics, achieved acceptably good results compared to the competitors.

From the test results with the strongly competitive algorithms on the CEC2022 
benchmark test set, it can be concluded that although the LEA as a whole is not 
yet up to the optimization capabilities of these strong algorithms, it can compete 
with these algorithms on most of the functions. Figure 10 shows the change in 
the percentage of exploration and exploitation of the LEA during the iteration 
process using the method defined in the literature [85]. It can be seen that the 
LEA exhibits different search behaviors on different functions. Combined with 
the numerical results, it can be concluded that the LEA is adaptable on different 
problems. Therefore, the proposed LEA is highly competitive and has potential 
for further development.

4.3 � Convergence analysis

The ultimate goal of all optimization algorithms is to find the global optimal solu-
tion accurately and quickly. Generally speaking, in the early stages of optimization, 

Table 8   Computational cost of the algorithms

Algorithm Properties Result Algorithm Properties Result

LEA T0 0.0707 TSA T0 0.0618
T1 1.0392 T1 1.2537
Tmean 3.1958 Tmean 3.4902
(Tmean − T1)/T0 30.5070 (Tmean − T1)/T0 36.2176

NOA T0 0.0711 SOA T0 0.0786
T1 1.0068 T1 1.3266
Tmean 2.7441 Tmean 3.3869
(Tmean − T1)/T0 24.4396 (Tmean − T1)/T0 26.2041

GJO T0 0.0627 HHO T0 0.0747
T1 1.3163 T1 1.4822
Tmean 3.2417 Tmean 2.8766
(Tmean − T1)/T0 30.6993 (Tmean − T1)/T0 18.6679

AOS T0 0.0709 RDPSO T0 0.0712
T1 1.1482 T1 1.6347
Tmean 3.2758 Tmean 2.6697
(Tmean − T1)/T0 30.0118 (Tmean − T1)/T0 14.5468
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there are sudden changes in the solution, which are more favorable for the algorithm 
to explore unknown areas. As optimization progresses, the fluctuation of the solu-
tion decreases appropriately so that an algorithm can focus on exploitation. The F3, 
F4, F7, F9, F22, and F27 functions (2 dimensions) of the CEC2017 benchmark test 
set are selected to evaluate the convergence behavior of the LEA.

The 2D images, search history, trajectory, and average fitness (the population size 
and the maximum number of iterations are set to 30 and 500, respectively) are given 
in Fig. 11. Search history and trajectory provides a visual representation of explora-
tion and exploitation. In the search history, the less dense areas are exploration, and 
the denser areas are exploitation. It is obvious from F24 that the LEA jumps out of 

Fig. 10   Changes in the percentage of exploration and exploitation by the LEA during the iteration pro-
cess
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the local optimal solution and then quickly converges to the vicinity of the global 
optimal solution. It is noteworthy that after 200 iterations, the trajectory graph of 
F27 still shows relatively large changes. This indicates that the LEA has the moti-
vation to explore better areas even in the late iterations. It can be noticed that there 

Fig. 11   Function images, search history, trajectory, and average fitness on some CEC2017 benchmark 
functions
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are two regions of high density in the search history of F1 and that the trajectory of 
F1 fluctuates a lot in the early stage and shows large fluctuations between iterations 
of 300 and 400. This indicates that the richer population diversity of the LEA can 
lead to a greater drive for exploitation. On F5 and F8, the solution fluctuates more in 
the early stage, but the location is still clustered in an ideal area. This indicates that 
for some complex optimization problems, LEA can quickly explore to have an ideal 
area. The average fitness values of all the functions show a decreasing trend with the 
number of iterations, which verifies the convergence of the LEA.

Figures 12, 13, and 14 give the convergence curves of the LEA and the com-
petitors for some CEC2017 benchmark test functions. The convergence speed 
of the LEA is obviously faster than the other compared algorithms on F1, F3, 

Fig. 12   Convergence curves on the unimodal and multimodal functions of the CEC2017 benchmark test 
set
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F5–F10, F12, F18, F19, F22, and F30. On F3, F9, and F15, although the LEA 
does not have outstanding convergence speed in the early iterations, it converges 
faster in the middle and late iterations, and eventually achieves the best optimi-
zation results as well. In addition, AOS ranks 2nd on F1, F5, F8, F9, F13, F15, 
F18, and F22 obviously; HHO ranks 2nd on F3, F10, F12, F19, and F30; and 
GJO obviously ranks 2nd no F6 and F7. Specifically, SOA converges slowly in 
the early stage, but significantly faster in the middle of the iteration, and also 
achieves better optimization results. It can be seen that the NOA, the TSA and 
the RDPSO perform the worst and do not achieve good convergence results on 
most of the functions. The variation of the convergence curves indicates that the 

Fig. 13   Convergence curves on some hybrid functions of the CEC2017 benchmark test set
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LEA converges faster on most of the functions compared to the competitors and 
satisfactory optimization results can be obtained.

4.4 � Statistical tests

The optimization results of the metaheuristic algorithm are random. A simple compar-
ison between algorithms only does not indicate algorithmic merit. For this reason, this 
section performs statistical tests on the optimization results on the CEC2017 bench-
mark functions. The Wilcoxon signed-rank test [86] is used for statistical testing at a 
significance level of 0.05. The original hypothesis H0: The median of the LEA’s 30 

Fig. 14   Convergence curves on some composition functions of the CEC2017 benchmark test set
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test results is greater than the median of 30 test results of a specific comparison algo-
rithm. Alternative hypothesis H1: A comparison algorithm’s median of 30 test results 
is greater than the median of 30 test results of the LEA.

Table 11 gives the p-values obtained by Wilcoxon signed-rank test for the LEA 
and each comparison algorithms at a significance level of 0.05. From the results, it 
can be concluded that the vast majority of p-values are less than 0.05, i.e., the vast 
majority of results are accepted for the alternative hypothesis H1, which verifies the 
superiority of the LEA.

Table 11   p-values obtained by Wilcoxon signed-rank test at a significance level of 0.05

No. LEA vs. 
NOA

LEA vs. 
GJO

LEA vs. 
AOS

LEA vs. 
TSA

LEA vs. 
SOA

LEA vs. 
HHO

LEA vs. 
RDPSO

F1 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11
F3 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11
F4 1.51E−11 1.51E−11 1.42E−08 1.51E−11 1.51E−11 2.98E−09 1.51E−11
F5 1.51E−11 1.08E−10 3.54E−08 1.51E−11 7.15E−09 5.47E−11 1.51E−11
F6 1.51E−11 2.10E−10 1.51E−11 1.51E−11 6.03E−11 1.51E−11 1.51E−11
F7 1.51E−11 6.44E−10 1.51E−11 1.51E−11 2.75E−11 1.51E−11 1.51E−11
F8 1.51E−11 8.88E−11 2.09E−09 1.51E−11 7.32E−11 9.28E−10 1.51E−11
F9 1.51E−11 3.83E−05 8.18E−06 1.51E−11 1.59E−04 1.84E−11 1.51E−11
F10 1.51E−11 4.05E−10 9.30E−07 1.51E−11 7.73E−10 5.78E−08 1.51E−11
F11 1.51E−11 1.51E−11 1.66E−01 1.51E−11 1.51E−11 8.02E−01 1.51E−11
F12 1.51E−11 1.51E−11 5.47E−11 1.51E−11 1.51E−11 7.32E−11 1.51E−11
F13 1.51E−11 1.67E−11 2.36E−04 1.51E−11 2.25E−11 1.51E−11 1.51E−11
F14 1.51E−11 1.30E−10 1.82E−08 1.51E−11 2.50E−09 2.77E−08 1.51E−11
F15 1.51E−11 1.74E−10 3.92E−01 1.51E−11 1.51E−11 9.28E−10 1.51E−11
F16 1.51E−11 3.37E−01 1.03E−03 3.35E−11 2.95E−01 4.77E−07 1.51E−11
F17 1.51E−11 3.49E−03 1.06E−04 2.31E−10 9.79E−02 3.38E−05 1.51E−11
F18 1.51E−11 8.88E−11 9.28E−10 1.51E−11 1.51E−11 2.49E−11 1.51E−11
F19 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11
F20 1.51E−11 3.81E−03 1.54E−08 4.45E−10 4.76E−04 5.05E−09 1.51E−11
F21 1.51E−11 1.98E−08 1.19E−10 1.51E−11 1.76E−07 1.51E−11 1.51E−11
F22 1.51E−11 3.01E−08 3.61E−06 1.51E−11 1.01E−07 1.30E−08 1.51E−11
F23 1.51E−11 1.22E−09 1.51E−11 1.51E−11 2.11E−04 1.51E−11 1.51E−11
F24 1.51E−11 1.29E−07 1.51E−11 1.51E−11 9.76E−01 1.51E−11 1.51E−11
F25 1.51E−11 1.51E−11 5.51E−09 1.51E−11 1.51E−11 3.06E−10 1.51E−11
F26 1.51E−11 1.51E−11 1.51E−11 1.51E−11 3.54E−08 3.39E−02 1.51E−11
F27 1.51E−11 2.04E−11 1.84E−11 1.51E−11 5.97E−07 2.49E−11 1.51E−11
F28 1.51E−11 1.51E−11 1.58E−10 1.51E−11 1.51E−11 2.31E−10 1.51E−11
F29 1.51E−11 6.64E−11 1.51E−11 1.51E−11 8.88E−11 2.04E−11 1.51E−11
F30 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11
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To further demonstrate the capabilities of the LEA to solve the benchmark test 
problems, Friedman test [87] is performed on all algorithms. The ranking results 
of each algorithm are shown in Table 12. From the ranking results, LEA ranks 1st, 
AOS ranks 2nd, HHO ranks 3rd, GJO ranks 4th, SOA ranks 5th, LFD ranks 6th, 
EBS ranks 7th, FHO ranks 8th, SPO ranks 9th, and TSA ranks 10th.

Table 12   Friedman test for 
ranking results

FAR is Friedman average rank

No. LEA NOA GJO AOS TSA SOA HHO RDPSO

F1 1 8 5 2 6 4 3 7
F3 1 8 5 3 6 4 2 7
F4 1 8 5 3 6 4 2 7
F5 1 8 5 2 6 3 4 7
F6 1 8 2 4 6 3 5 7
F7 1 8 2 4 6 3 5 7
F8 1 8 5 2 6 4 3 7
F9 1 8 4 3 6 2 5 7
F10 1 8 5 3 6 4 2 7
F11 2 8 5 3 6 4 1 7
F12 1 8 5 3 6 4 2 7
F13 1 8 5 2 6 4 3 7
F14 1 7 5 2 8 4 3 6
F15 1 8 5 2 6 4 3 7
F16 1 8 3 4 6 2 5 7
F17 1 8 3 4 6 2 5 7
F18 1 8 5 2 6 3 4 7
F19 1 8 5 4 6 3 2 7
F20 1 8 2 4 6 3 5 7
F21 1 8 3 4 6 2 5 7
F22 1 8 5 2 6 3 4 7
F23 1 8 3 4 6 2 5 7
F24 2 8 3 4 5 1 6 7
F25 1 8 5 2 6 4 3 7
F26 1 8 4 5 6 2 3 7
F27 1 8 3 5 6 2 4 7
F28 1 8 4 2 5 6 3 7
F29 1 8 3 5 6 4 2 7
F30 1 8 5 3 6 4 2 7
FAR 1.07 7.97 4.10 3.17 6.00 3.24 3.48 6.97
Rank 1 8 5 2 6 3 4 7
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4.5 � Scalability analysis

Scalability can be used to evaluate the performance of metaheuristic algorithms in 
the face of growing problem size, complexity, or resource constraints. Algorithms 
are usually considered competitive and better scalable when they can effectively 
handle high-dimensional spaces or large-scale problems without sacrificing perfor-
mance and efficiency. In this section, the scalability of the LEA is evaluated using 
the CEC2017 benchmark functions (30, 50, and 100 dimensions).

The optimization results are recorded in Table  13. From the analysis, it can 
be obtained that (1) on the unimodal functions, the results do not become much 
larger as the dimensionality increases (F3 is particularly reflective of this); (2) 

Table 13   Optimization results for CEC2017 benchmark functions (30, 50, and 100 dimensions)

No. Metrics 30 50 100 No. Metrics 30 50 100

F1 Ave 7.84E+03 9.39E+03 2.60E+04 F1 Var 5.39E+07 1.01E+08 5.23E+08
F3 Ave 3.00E+02 3.00E+02 3.00E+02 F3 Var 1.13E−10 3.94E−09 4.42E−06
F4 Ave 4.81E+02 5.18E+02 6.47E+02 F4 Var 4.42E+02 2.75E+03 1.28E+03
F5 Ave 6.23E+02 7.55E+02 1.21E+03 F5 Var 7.03E+02 1.88E+03 6.12E+03
F6 Ave 6.06E+02 6.22E+02 6.52E+02 F6 Var 3.07E+01 1.03E+02 2.50E+01
F7 Ave 9.00E+02 1.14E+03 2.13E+03 F7 Var 1.75E+03 7.87E+03 6.18E+04
F8 Ave 9.13E+02 1.05E+03 1.52E+03 F8 Var 6.76E+02 2.29E+03 1.15E+04
F9 Ave 2.98E+03 1.01E+04 2.69E+04 F9 Var 1.56E+06 1.07E+07 2.43E+07
F10 Ave 3.89E+03 6.84E+03 1.44E+04 F10 Var 3.30E+05 7.66E+05 2.29E+06
F11 Ave 1.30E+03 1.44E+03 2.59E+03 F11 Var 3.32E+03 5.18E+03 8.45E+04
F12 Ave 1.98E+06 1.18E+07 4.00E+07 F12 Var 1.34E+12 4.59E+13 2.53E+14
F13 Ave 7.44E+04 1.62E+05 1.28E+05 F13 Var 1.36E+09 9.57E+09 1.80E+09
F14 Ave 8.28E+03 7.86E+04 4.01E+05 F14 Var 1.99E+07 3.43E+09 4.26E+10
F15 Ave 2.10E+04 5.94E+04 1.12E+05 F15 Var 1.50E+08 9.45E+08 2.79E+09
F16 Ave 2.50E+03 3.49E+03 5.65E+03 F16 Var 1.21E+05 1.77E+05 1.93E+05
F17 Ave 2.12E+03 3.08E+03 5.40E+03 F17 Var 3.37E+04 1.51E+05 1.94E+05
F18 Ave 1.97E+05 3.79E+05 7.13E+05 F18 Var 2.12E+10 2.93E+10 7.03E+10
F19 Ave 1.32E+04 2.18E+04 8.26E+04 F19 Var 1.57E+08 1.15E+08 9.57E+08
F20 Ave 2.35E+03 2.92E+03 4.62E+03 F20 Var 2.14E+04 4.60E+04 1.70E+05
F21 Ave 2.41E+03 2.56E+03 3.11E+03 F21 Var 1.03E+03 2.62E+03 8.84E+03
F22 Ave 2.55E+03 8.11E+03 1.73E+04 F22 Var 8.69E+05 5.00E+06 2.61E+06
F23 Ave 2.77E+03 3.02E+03 3.51E+03 F23 Var 7.88E+02 4.41E+03 7.45E+03
F24 Ave 2.96E+03 3.22E+03 4.07E+03 F24 Var 3.21E+03 1.22E+04 1.43E+04
F25 Ave 2.89E+03 3.02E+03 3.27E+03 F25 Var 7.59E+01 1.61E+03 2.97E+03
F26 Ave 5.07E+03 6.32E+03 1.35E+04 F26 Var 3.10E+05 5.34E+05 1.65E+06
F27 Ave 3.23E+03 3.46E+03 3.54E+03 F27 Var 4.37E+02 7.27E+03 6.18E+03
F28 Ave 3.18E+03 3.29E+03 3.38E+03 F28 Var 4.45E+03 7.52E+02 1.99E+03
F29 Ave 3.73E+03 4.19E+03 6.74E+03 F29 Var 2.23E+04 8.34E+04 3.11E+05
F30 Ave 3.44E+04 1.57E+06 8.12E+05 F30 Var 1.79E+08 2.13E+11 7.91E+10
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on the multimodal functions F5 to F10, the growth of the optimization results 
of the LEA on all dimensions is not significant, except for F5, F9, and F10; (3) 
it is worth noting that the optimization results do not show an order of magni-
tude increase with increasing dimensions on the hybrid functions F11, F13, and 
F16–F20; (4) on the composition functions F21, F23, F24, F25, and F27–F29, the 
changes in the optimization results are relatively small; and (5) on F30, the result 

Fig. 15   Convergence curves of the LEA on some CEC2017 unimodal, multimodal and hybrid functions 
(30, 50, and 100 dimensions)
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reaches its maximum at 50 dimensions and gets decreased again on at 100 dimen-
sions, which may be due to the increase of MaxFEs with the stronger search 
capability of the LEA.

Figures 15 and 16 give the convergence curves obtained by the LEA solving part 
of the CEC2017 benchmark functions (30, 50, and 100 dimensions). It can be seen 
that the convergence curves of F1, F12–F15, F18, F19, and F30 still do not converge 
at the later stages. It can be assumed that sufficient MaxFEs have a higher prob-
ability of giving similar results for the LEA in 30, 50, and 100 dimensions. Moreo-
ver, the convergence curves for F3, F4, F11, F17, F25, and F27–F29 level off in 
the later stages, but the optimization results do not get much larger with increasing 
dimensionality. Some bad performance is reflected in F8, F21, F23, F24, and F26. 
On these functions, the LEA tends to converge at a later stage and the optimization 
results vary more with increasing dimensions. However, as given in Table 13, these 
increases are still within acceptable limits.

Fig. 16   Convergence curves of the LEA on some CEC2017 composition functions (30, 50, and 100 
dimensions)
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5 � Applications to real‑world optimization problems

Most practical engineering problems are difficult to solve with more constraints. In 
order to test the capability of the LEA to solve real-world optimization problems, 
eight engineering problems are selected, which are speed reducer design problem, 
pressure vessel design problem, cantilever beam design problem, I-beam design 
problem, tubular column design problem, piston lever design problem, rolling ele-
ment bearing design problem, and welded beam design problem. The LEA and its 
competitors in Table 3 are run independently 30 times. Furthermore, the optimiza-
tion performance of different algorithms is analyzed through the best of these 30 
results.

5.1 � Speed reducer design problem

In a mechanical system, the speed reducer is one of the essential components of the 
gearbox. The design of the speed reducer (Fig. 17) is a challenging problem. In this 
problem, the weight of the reducer is minimized subject to 11 constraints [88]. The 
problem has seven variables, which are the face width of teeth ( z1 ), module of teeth 
( z2 ), the number of teeth in the pinion ( p ), length of the first shaft between bearings 
( l1 ), length of the second shaft between bearings ( l2 ), the diameter of first shafts ( d1 ) 

1l 2l

1d

2d

1z 2z

Fig. 17   Schematic diagram of the speed reducer design problem
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and the diameter of second shafts ( d2 ). The mathematical form of the problem is 
given in Eq. (22).

Consider:

Minimize:

Subject to:

Variable range:
2.6 ≤ x1 ≤ 3.6 , 0.7 ≤ x2 ≤ 0.8 , x3 ∈ {17, 18, 19,… , 27, 28} , 7.3 ≤ x4, x5 ≤ 8.3 , 

2.9 ≤ x6 ≤ 3.9 , 5 ≤ x7 ≤ 5.5.
The best results obtained by the LEA and the competitors on the speed reducer 

design problem are shown in Table 14. It can be concluded that the LEA achieves 
the top ranked result provided that the constraints are satisfied. It is noted that the 
LEA far outperformed the NOA, TSA, and RDPSO on this problem. Meanwhile, the 
AOS achieved similar results to the LEA on this problem.

� =
[
x1, x2, x3, x4, x5, x6, x7

]
=
[
z1, z2, p, l1, l2, d1, d2

]
.

(22)
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5.2 � Pressure vessel design problem

In this problem, the ends of the cylindrical container are covered by hemispherical 
caps (as shown in Fig. 18). There are four variables and four constraints with the 
objective of minimizing the total cost in this problem [89]. The four variables are 
thickness of the shell ( Ts ), thickness of the head ( Th ), the inner radius ( R ), and the 
length of the cylindrical section of the vessel without the head ( L ). The mathemati-
cal description of the problem is given in Eq. (23).

Consider:
� =

[
x1, x2, x3, x4

]
=
[
Ts, Th,R, L

]
.

Minimize:

Subject to:

Variable range:
x1, x2 ∈ {1 × 0.0625, 2 × 0.0625,… , 99 × 0.0625} , 10 ≤ x3, x4 ≤ 200.
The best results obtained by the different algorithms on the pressure vessel 

design problem are shown in Table 15. The LEA, the GJO, the SOA, and the HHO 
have obtained similar optimization results. But the LEA is still number one on this 
problem.

(23)f (�) = 0.6224x1x3x4 + 1.7781x2x
2
3
+ 3.1661x2

1
x4 + 19.84x2

1
x3.

g1(�) = −x1 + 0.0193x3 ≤ 0,

g2(�) = −x2 + 0.00954x3 ≤ 0,

g3(�) = −�x2
3
x4 −

4

3
�x3

3
+ 1296000 ≤ 0,

g4(�) = x4 − 240 ≤ 0.

Fig. 18   Schematic diagram of the pressure vessel design problem
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Fig. 19   Schematic diagram of the cantilever beam design problem

Table 16   Best results of different algorithms for the cantilever beam design problem

LEA NOA GJO AOS TSA SOA HHO RDPSO

x1 6.0112 7.0416 6.0201 6.1425 5.9591 5.9921 6.0464 4.7158
x2 5.2974 4.7512 5.2971 5.1556 5.2226 5.3039 5.2237 16.0349
x3 4.5057 5.9815 4.4796 4.6156 4.5505 4.5222 4.5718 5.4816
x4 3.5112 12.9275 3.5220 3.3931 3.6176 3.5062 3.5074 3.6315
x5 2.1485 2.4502 2.1553 2.1982 2.1474 2.1501 2.1306 2.3615
g − 0.000013 − 0.320301 − 0.000004 − 0.000230 − 0.001517 − 0.000039 − 0.0000002 − 0.071908
f 1.33997 2.06868 1.33998 1.34191 1.34143 1.34001 1.34034 2.01086

Fig. 20   Schematic diagram of the I-beam design problem
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5.3 � Cantilever beam design problem

The problem is an example of structural engineering design for weight optimization 
of a cantilever beam with a square section [90]. As depicted in Fig. 19, one end of 
the beam is rigidly supported, and the cantilever-free node is affected by force in the 
vertical direction. The beam consists of five hollow square blocks. The thickness of 
the blocks is kept constant 2∕3 in this problem. Its height (or width) is considered a 
decision variable ( x1, x2, x3, x4, x5 ), and the problem can be expressed as Eq. (24).

Minimize:

Subject to:

Variable range:

The best solutions to this problem obtained by the LEA and the comparison algo-
rithms are shown in Table 16. In terms of results, the result obtained by LEA are 
better than those of other algorithms. Among them, the optimization results of the 
LEA and the GJO are very close, but the LEA still has certain advantages.

5.4 � I‑beam design problem

The optimal design of the I-beam vertical deflection (Fig. 20) is a typical engineer-
ing optimization problem. The target of the optimization is to minimize the verti-
cal deflection of the beam subject to given condition of the cross-sectional area as 
well as the stress constraint [91]. This optimization problem covers four decision 

(24)f (�) = 0.0624
(
x1 + x2 + x3 + x4 + x5

)
.

g(�) =
61

x3
1

+
37

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

− 1 ≤ 0.

0.01 ≤ xi ≤ 100, i = 1,… , 5.

Table 17   Best results of different algorithms for the I-beam design problem

x1 x2 x3 x4 g1 g2 f

LEA 80 50.0000 0.9 2.3217931 0 − 1.5702280 0.01307411916
NOA 79.6370 47.4508 0.9396 2.3686131 − 4.841887 − 1.3523652 0.01356782111
GJO 80 50 0.9 2.3217916 − 0.000065 − 1.5702273 0.01307412207
AOS 80 50 0.9 2.3217922 − 0.000007 − 1.5702284 0.01307411924
TSA 80 50 0.9 2.3211758 − 0.060534 − 1.5691801 0.01307705751
SOA 80 50 0.9 2.3217895 − 0.000271 − 1.5702238 0.01307413207
HHO 80 50 0.9 2.3217922 − 0.000010 − 1.5702283 0.01307411938
RDPSO 79.7060 37.0861 0.9243 3.1187869 − 0.768549 − 1.0201020 0.01351537425
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variables, including the width of flange ( b ), the height of section ( h ), the thickness 
of the web ( tw ), and the thickness of the flange ( tf ). The maximum vertical deflection 
of the beam is PL3

/
48EI , where the beam length ( L ) is 5200 cm and the modulus 

of elasticity ( E ) is 523.104 kN∕cm2 . The objective function of the problem and the 
constraints are as in Eq. (25).

Consider:

Minimize:

Subject to:

� =
[
x1, x2, x3, x4

]
=
[
b, h, tw, tf

]
.

(25)f (�) =
5000

x3
(
x2 − 2x4

)3/
12 +

(
x1x

3
4

/
6
)
+ 2bx4

(
x2 − x4∕2

)2 .

g1(�) = 2x1x3 + x3
(
x2 − 2x4

)
≤ 300,

g2(�) =
18x2 × 104

x3
(
x2 − 2x4

)3
+ 2x1x3

[
4x2

4
+ 3x2

(
x2 − 2x4

)] +
15x1 × 103(

x2 − 2x4
)
x2
3
+ 2x3x

3
1

≤ 56.

Fig. 21   Schematic diagram of the tubular column design problem
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Variable range:
10 ≤ x1 ≤ 50 , 10 ≤ x2 ≤ 80 , 0.9 ≤ x3 ≤ 5 , 0.9 ≤ x4 ≤ 5.
From Table  17, the best results of the design problem of I-beam can be seen 

under the optimization of different algorithms. It is found that the performance of 
LEA optimization search is slightly better than the AOS, the HHO, the GJO, the 
SOA, the TSA, and even significantly better than the RDPSO and the NOA, which 
ranks 1st overall.

5.5 � Tubular column design problem

The optimal design of the tubular column (Fig. 21) is a typical engineering optimi-
zation problem and is an example of how engineers can minimize costs by designing 
a uniform column with a tubular cross section to withstand compressive loads [92]. 
The two main variables of this problem are the average diameter of the column ( d ) 
and the thickness of the column ( t ). Moreover, the yield stress of this engineering 
material is 500 kgf

/
cm2 and the modulus of elasticity is 8.5 × 105 kgf

/
cm2 . The 

objective function of the problem and the constraints are as in Eq. (26).
Consider:

Minimize:

Subject to:

� =
[
x1, x2

]
= [b, t].

(26)f (x) = 9.8x1x2 + 2x1.

Table 18   Best results of different algorithms for the tubular column design problem

LEA NOA GJO AOS TSA SOA HHO RDPSO

x1 5.4522 5.4456 5.4532 5.4521 5.4543 5.4510 5.4509 5.4885
x2 0.2916 0.2937 0.2916 0.2916 0.2922 0.2918 0.2918 0.2897
g1 − 2.89E−14 − 9.44E−03 − 4.05E−05 − 5.94E−05 − 3.61E−03 − 7.82E−04 − 7.47E−04 − 2.64E−04
g2 − 1.78E−13 − 1.70E−01 − 1.96E−02 − 5.22E−05 − 1.44E−01 − 3.43E−03 − 8.19E−06 − 6.38E−01
g3 − 0.633174 −0.632734 − 0.633246 − 0.633168 − 0.633314 − 0.633096 − 0.633087 − 0.635601
g4 − 0.610559 − 0.611025 − 0.610482 − 0.610566 − 0.610410 − 0.610641 − 0.610651 − 0.607965
g5 − 0.314191 − 0.319057 − 0.314075 − 0.314229 − 0.315482 − 0.314674 − 0.314676 − 0.309739
g6 − 0.318477 − 0.319294 − 0.318344 − 0.318490 − 0.318217 − 0.318622 − 0.318639 − 0.313940
f 26.48636 26.56584 26.48889 26.48674 26.52587 26.49171 26.49109 26.56155
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g1(x) =
P

�x1x2�y
− 1 ≤ 0,

g2(x) =
8PL2

�3Ex1x2
(
x2
1
+ x2

2

) − 1 ≤ 0,

g3(x) =
2

x1
− 1 ≤ 0,

g4(x) =
x1

14
− 1 ≤ 0,

g5(x) =
0.2

x2
− 1 ≤ 0,

g6(x) =
x1

8
− 1 ≤ 0

Fig. 22   Schematic diagram of the piston lever design problem
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Variable range:
2 ≤ x1 ≤ 14 , 0.2 ≤ x2 ≤ 0.8.
As shown in Table  18, the best results of the optimization design problem for 

the tubular column in different algorithms. Experiments show that the optimization 
performance of the LEA outperforms the comparison algorithms. In particular, the 
proposed algorithm finds the best solution better than the NOA and the RDPSO, and 
performs similarly to and better than the GJO, the AOS, and the TSA.

5.6 � Piston lever design problem

The main objective of the design of piston lever problem is to determine the 
parameters of the piston assembly during the lifting of the piston rod from 0° to 
45°, so that the oil volume is minimized [93]. The position of the piston assembly 
( H , B , D , and X ) is presented in Fig.  22, and its mathematical model can be 
expressed as Eq. (27).

Consider:

Minimize:

Subject to:

� =
[
x1, x2, x3, x4

]
= [H,B,D,X].

(27)f (�) =
1

4
�x2

3

(
L2 − L1

)
.

g1(�) = QL cos � − R × F ≤ 0,

g2(�) = Q
(
L − x4

)
−Mmax ≤ 0,

g3(�) = 1.2
(
L2 − L1

)
− L1 ≤ 0,

g4(�) =
x3

2
− x2 ≤ 0.

Table 19   Best results of different algorithms for the piston lever design problem

LEA NOA GJO AOS TSA SOA HHO RDPSO

x1 0.05 2.25339 0.05 0.05009 0.05 0.05026 0.05 14.11759
x2 2.04162 20.91339 2.04254 2.04208 2.05720 2.04180 2.07417 18.52856
x3 4.08314 4.47145 4.08378 4.08390 4.08998 4.08302 4.10912 3.93935
x4 120 118.752 120 119.94 120 120 118.604 119.352
g1 − 98.92 − 801,591.77 − 644.56 − 27.35 − 6010.01 − 10.12 − 2606.14 − 581,343.39
g2 − 600,000 − 587,518.07 − 600,000 − 599,489.9 − 600,000 − 600,000 − 586,043.0 − 593,522.6
g3 − 117.1873 − 87.1167 − 117.1861 − 117.1356 − 117.1661 − 117.1869 − 115.7472 − 81.7720
g4 − 0.00005 − 18.67767 − 0.00065 − 0.00013 − 0.01221 − 0.00028 − 0.01962 − 16.55888
f 8.41361 140.64335 8.41988 8.41940 8.50355 8.41628 8.65278 203.49531
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where

Variable range:
0.05 ≤ x1, x2, x4 ≤ 500 , 0.05 ≤ x3 ≤ 120.
The best results of the piston lever design problem optimized with different 

algorithms are given in Table  19. From the experiments, it can be concluded 
that the results of the LEA are ranked 1st while meeting the constraints. On this 
problem, the LEA performs far better than the NOA, the TSA, the HHO, and the 
RDPSO. Meanwhile, the GJO, the AOS, and the SOA showed similar results to 
the LEA.

R =

|||−x4
(
x4 sin � + x1

)
+ x1

(
x2 − x4 cos �

)|||√(
x4 − x2

)2
+ x2

1

,

F =
�Px2

3

4
,

L1 =

√(
x4 − x2

)2
+ x2

1
,

L2 =

√(
x4 sin � + x1

)2
+
(
x2 − x4 cos �

)2
,

� = 45◦,

Q = 10000 lbs,

L = 240 in,

Mmax = 1.8 × 106 lbs in,

P = 1500 psi.

Fig. 23   Schematic diagram of the rolling element bearing design problem
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5.7 � Rolling element bearing design problem

The goal of the rolling element bearing design problem is to maximize fatigue life 
[94]. Moreover, fatigue life is closely related to its dynamic load carrying capacity. 
The problem involves 10 decision variables and 9 constraints. The schematic dia-
gram of the rolling element bearing design is shown in Fig. 23, and its mathematical 
expression is defined in Eq. (28).

Consider:

Maximum:

Subject to:

� =
[
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

]
=
[
Dm,Db, Z, fi, f0,KDmin,KDmax, �, e, �

]
.

(28)f (�) =

{
fc × Z2∕ 3 × D1.8

b
Db ≤ 25.4

3.647 × fc × Z2∕ 3 × D1.4

b
Db > 25.4

.

t

l L

h b

Fig. 24   Schematic diagram of the welded beam design problem
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where

g1(x) = −
�0

2 arcsin
(
Db

/
Dm

) + Z − 1 ≤ 0,

g2(x) = −2Db + KDmin(D − d) ≤ 0,

g3(x) = −KDmax(D − d) + 2Db ≤ 0,

g4(x) = −Dm + (0.5 − e)(D + d) ≤ 0,

g5(x) = Dm − (0.5 + e)(D + d) ≤ 0,

g6(x) = −Dm + 0.5(D + d) ≤ 0,

g7(x) = −0.5
(
D − Dm − Db

)
+ �Db ≤ 0,

g8(x) = �B� − Db ≤ 0,

g9(x) = 0.515 − fi ≤ 0,

g10(x) = 0.515 − fo ≤ 0.

fc = 37.91
⎧

⎪

⎨

⎪

⎩

1 +
⎡

⎢

⎢

⎣

1.04
(

1 − �
1 + �

)1.72
(

fi
(

2fo − 1
)

fo
(

2fi − 1
)

)0.41
⎤

⎥

⎥

⎦

10∕ 3
⎫

⎪

⎬

⎪

⎭

−0.3

×

[

�0.3(1 − �)1.39

fo(1 + �)
1
3

]

×
[

2fi
2fi − 1

]0.41

,

�0 = 2� − 2 arccos
[

(D − d)∕ 2 − 3(T∕ 4)
]2 +

(

D∕ 2 − T∕ 4 − Db
)2 − (d∕ 2 + T∕ 4)2

2
[

(D − d)∕ 2 − 3(T∕ 4)
](

D∕ 2 − T∕ 4 − Db
) ,

T = D − d − 2Db, B� = 30, D = 160, d = 90, ri = r0 = 11.033.

Table 21   Best results of different algorithms for the welded beam design problem

LEA NOA GJO AOS TSA SOA HHO RDPSO

x1 0.20570 0.20710 0.20557 0.20577 0.20037 0.20399 0.19132 0.20305
x2 3.47153 3.73723 3.48002 3.47590 3.64637 3.51970 3.84924 3.42250
x3 9.03661 9.77945 9.03991 9.03217 8.96104 9.03675 8.94836 9.46263
x4 0.20573 0.22010 0.20581 0.20597 0.20982 0.20575 0.20981 0.20384
g1 − 1.39104 − 1635.95 − 23.1131 − 14.1106 − 76.6266 − 35.1355 − 0.67354 − 162.537
g2 − 0.14017 − 6056.72 − 33.9125 − 5.88963 − 86.5844 − 3.81050 − 0.29998 − 2386.44
g3 − 0.00003 − 0.01300 − 0.00024 − 0.00021 − 0.00945 − 0.00176 − 0.01849 − 0.00079
g4 − 3.39057 − 3.11585 − 3.38868 − 3.38908 − 3.35941 − 3.38687 − 3.34734 − 3.33771
g5 − 0.08070 − 0.08210 − 0.08057 − 0.08077 − 0.07537 − 0.07899 − 0.06632 − 0.07805
g6 − 0.23554 − 0.23934 − 0.23556 − 0.23554 − 0.23546 − 0.23554 − 0.23540 − 0.23729
g7 − 0.13959 − 1727.13 − 8.69591 − 19.38058 − 329.94 − 1.85256 − 323.08 − 12.4242
f 1.724961 2.013841 1.727101 1.726728 1.757961 1.728961 1.767866 1.772630
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Variable range:
0.5(D + d) ≤ x1 ≤ 0.6(D + d) , 0.15(D − d) ≤ x2 ≤ 0.45(D − d) , 4 ≤ x3 ≤ 50 , 

0.515 ≤ x4, x5 ≤ 0.6 , 0.4 ≤ x6 ≤ 0.5 , 0.6 ≤ x7 ≤ 0.7 , 0.3 ≤ x8 ≤ 0.4 , 
0.02 ≤ x9 ≤ 0.1 , 0.6 ≤ x10 ≤ 0.85.

Table 20 shows the best results obtained by different algorithms for optimizing 
this problem. It can be noted that the NOA and the RDPSO perform the worst on 
this problem. Moreover, although all algorithms except for the NOA and the RDPSO 
achieved good optimization results, LEA still came in first place, showing a strong 
competition.

5.8 � Welded beam design problem

The welded beam design problem (Fig.  24) is an engineering problem that was 
proposed by Coello and solved by many researchers using different methods [95]. 
The problem is constrained by seven conditions from stress, deflection, welding, 
and geometry, and the objective is to find the minimum manufacturing cost of the 
welded beam. The decision variables are weld thickness ( h ), height ( l ), length ( t ), 
and crossbeam thickness ( b ). The objective function can be defined in Eq. (29).

Consider:

Minimize:

Subject to:

where

� =
[
x1, x2, x3, x4

]
= [h, l, t, b].

(29)f (�) = 1.10471x2
1
x2 + 0.04811x3x4

(
14 + x2

)
.

g1(x) = �(x) − �max ≤ 0,

g2(x) = �(x) − �max ≤ 0,

g3(x) = �(x) − �max ≤ 0,

g4(x) = x1 − x4 ≤ 0,

g5(x) = P − Pc(x) ≤ 0,

g6(x) = 0.125 − x1 ≤ 0,

g7(x) = 1.10471x2
1
+ 0.04811x3x4

(
14.0 + x2

)
− 5.0 ≤ 0.
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Variable range:
0.1 ≤ x1, x4 ≤ 2 , 0.1 ≤ x2, x3 ≤ 10.
The best results of the welded beam design problem optimized with different 

algorithms are given in Table 21. From the experimental results, it is concluded that 
the LEA ranks 1st when the constraints are satisfied. The LEA performs much better 
than the NOA on this problem. In addition, the LEA shows a slight advantage over 
the TSA, the HHO, and the RDPSO. Meanwhile, a host of algorithms such as GJO, 
AOS, and SOA compared to it showed similar results to the LEA.

6 � Conclusion

In this paper, an evolutionary algorithm inspired by the stimulus–value–role 
theory called Love Evolution Algorithm (LEA) was proposed. The proposed 
algorithm abstracts human characteristics (e.g., temperament, personality, 
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hobbies, etc.) into solutions and happiness in relationships into objective func-
tion values. In addition, the LEA includes three phases: the stimulus phase, the 
value phase, and the role phase. The goal of the LEA is to enhance the charac-
teristics of both partners in a relationship through mutual learning and bonding 
between the two people in the relationship, thus enhancing the happiness of 
both partners.

This paper verified the optimization performance of the LEA using the CEC2017 
and CEC2022 benchmark test sets. Seven recent and excellent metaheuristic algo-
rithms were compared with the LEA on the CEC2017 benchmark functions. These 
algorithms include the NOA, the GJO, the AOS, the TSA, the SOA, the HHO, and 
the RDPSO. Then, Wilcoxon signed-rank test and Friedman test were performed 
for the optimization results of the LEA and the competitors on the CEC2017 bench-
mark functions. In addition, the LEA and seven state-of-the-art metaheuristic algo-
rithms were used to optimize the CEC2022 benchmark functions to validate the 
strong competitiveness of the LEA through comparisons. These seven state-of-the-
art metaheuristics are L-SHADE, AL-SHADE, L-SHADE-spacma, AFDB-ARO, 
FDB-AGDE, FDB-AGSK, and FDB-PPSO. Moreover, time complexity analysis, 
convergence analysis, and scalability analysis were performed. Afterward, the LEA 
was used to solve eight real-world optimization problems to verify the capability of 
the LEA to solve engineering problems. These eight real-world optimization prob-
lems include the speed reducer design problem, the pressure vessel design problem, 
the cantilever beam design problem, the I-beam design problem, the tubular column 
design problem, the piston lever design problem, the rolling element bearing design 
problem, and the welded beam design problem. The core results obtained from this 
study are summarized as follows:

(1)	 The time complexity of the LEA is not dominant compared to the competitors 
(CEC2017 benchmark set), but it is feasible.

(2)	 The LEA achieves similar results to the state-of-the-art algorithms on the 
CEC2022 benchmark functions, validating the stronger competitiveness of the 
LEA.

(3)	 The LEA is able to exhibit different optimization behaviors on the CEC2022 
benchmark functions.

(4)	 The LEA converges significantly faster on F1, F3, F5~F10, F12, F18, F19, F22, 
and F30 (CEC2017 benchmark set) compared to the competitors.

(5)	 The p-values obtained from the Wilcoxon signed-rank test are mostly less than 
0.05, indicating that there is a significant difference between the results of LEA 
and those of the competitors.

(6)	 On the Friedman test, the LEA ranks 2nd on F11 and F24, and 1st on the remain-
ing functions; and the final rank of the LEA is 1st.

(7)	 The LEA shows strong scalability on most functions of the CEC2017 benchmark 
set.

(8)	 The LEA demonstrates good optimization capabilities for real-world optimiza-
tion problems.
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The proposed LEA provides some new search operations. From the results of this 
paper, it can be concluded that the LEA has a large research prospect. In the future, 
other valuable research based on this study includes:

(1)	 Provide a multi-objective optimization version of the LEA.
(2)	 Discuss the applications of the LEA to discrete-valued and binary optimization 

problems.
(3)	 Prove theoretically the convergence of the LEA.
(4)	 Propose improved LEA in terms of population initialization (e.g., chaotic map-

ping), selection of a guided individual (e.g., the fitness–distance balance), bal-
ance between exploration and exploitation (e.g., parameters or new search opera-
tions), and update mechanisms (e.g., the natural survivor method).

(5)	 Propose fusion algorithms with better performance by fusing LEA and other 
metaheuristics.

(6)	 Propose improved versions of the LEA for constrained engineering problems 
(e.g., the fitness–distance–constraint).

(7)	 Apply the LEA to different real-world optimization problems.
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