
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-05905-4

1 3

Love Evolution Algorithm: a stimulus–value–role
theory‑inspired evolutionary algorithm for global
optimization

Yuansheng Gao1 · Jiahui Zhang2 · Yulin Wang3 · Jinpeng Wang1 · Lang Qin4

Accepted: 4 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature ,
corrected publication 2024

Abstract
This paper proposes the Love Evolution Algorithm (LEA), a novel evolutionary
algorithm inspired by the stimulus–value–role theory. The optimization process
of the LEA includes three phases: stimulus, value, and role. Both partners evolve
through these phases and benefit from them regardless of the outcome of the rela-
tionship. This inspiration is abstracted into mathematical models for global optimi-
zation. The efficiency of the LEA is validated through numerical experiments with
CEC2017 benchmark functions, outperforming seven metaheuristic algorithms as
evidenced by the Wilcoxon signed-rank test and the Friedman test. Further tests
using the CEC2022 benchmark functions confirm the competitiveness of the LEA
compared to seven state-of-the-art metaheuristics. Lastly, the study extends to real-
world problems, demonstrating the performance of the LEA across eight diverse
engineering problems. Source codes of the LEA are publicly available at https://​
ww2.​mathw​orks.​cn/​matla​bcent​ral/​filee​xchan​ge/​159101-​love-​evolu​tion-​algor​ithm.

Keywords  Optimization · Metaheuristic · Evolutionary algorithm · Love Evolution
Algorithm

1  Introduction

Optimization techniques are widely employed to optimize the design of real-
world problems to raise the efficiency of systems, human resources, etc. However,
the complexity of most practical problems, characterized by numerous design

 *	 Yuansheng Gao
	 gaoyuansheng2021@163.com

1	 College of Science, Liaoning Technical University, Fuxin 123000, China
2	 College of Mining Engineering, Liaoning Technical University, Fuxin 123000, China
3	 College of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China
4	 School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China

https://ww2.mathworks.cn/matlabcentral/fileexchange/159101-love-evolution-algorithm
https://ww2.mathworks.cn/matlabcentral/fileexchange/159101-love-evolution-algorithm
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05905-4&domain=pdf

	 Y. Gao et al.

1 3

variables and constraints, often exceeds the capability of classical optimization
algorithms [1, 2]. Numerous metaheuristic algorithms are designed to compre-
hensively explore the search space, utilizing practical information to circumvent
local optimization pitfalls. Additionally, metaheuristic algorithms offer signifi-
cant advantages, including gradient-free operations, reduced computational com-
plexity, and enhanced flexibility. With these advantages, metaheuristic algorithms
have been widely used in many fields of optimization problems and have been
paid more and more attention by many scholars [3].

Metaheuristic algorithms have two most important behaviors: exploration and
exploitation [4]. In the early iterative phase, algorithms prefer to search the entire
solution space extensively, which is related to avoiding local optima. If over-
explored, the quality of the solution will be poor. Conversely, if over-exploited, it
can make the algorithms vulnerable to local optima. Therefore, achieving a satis-
factory solution necessitates a good balance between exploration and exploitation.

Recently, the application of metaheuristic algorithms to highly complex prob-
lems has seen a substantial increase. Unlike traditional optimization algorithms,
metaheuristic algorithms are gradient-free optimization techniques for solv-
ing near-optimal solutions, which can solve black-box optimization problems
similar to machine learning algorithms with hyperparametric optimization [5].
Metaheuristic algorithms are considered to be of greater research value due to the
consideration of its irreplaceable advantages in certain problems, like black-box
optimization problems. As posited by the no free lunch theorem [6], it is acknowl-
edged that no individual metaheuristic algorithm is universally effective for all
optimization problems. In other words, the different characteristics exhibited by
different problems make the metaheuristic algorithms behave differently during
the optimization process, which results in varied performance of metaheuristic
algorithms; some may excel in certain problem classes while faltering in others.
Although numerous metaheuristic algorithms are proposed nowadays, we still
need to develop new metaheuristic algorithms that provide new search processes
to adapt to possible problems to be solved.

The proposed Love Evolution Algorithm (LEA) is an evolutionary algorithm
inspired by the stimulus–value–role (SVR) theory [7]. Drawing from the SVR
theory, the search process of the LEA encompasses three distinct phases: the
stimulus phase, the value phase, and the role phase. The greatest novelty of LEA
lies in its unique search operations, including inter-variable convolution, multi-
plication, and division for crossover and mutation. In addition, the proposed LEA
is verified to be highly competitive using the CEC2017 and CEC2022 benchmark
functions. Eight real-world optimization problems were used to validate the capa-
bility of the LEA to solve practical problems.

The main contributions of this paper are as follows:

(1)	 Proposed an evolutionary algorithm: the Love Evolution Algorithm.
(2)	 Tested the proposed algorithm on 41 benchmark functions.

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

(3)	 Verified the competitiveness of the proposed algorithm in comparison with
strong metaheuristic algorithms.

(4)	 Proposed algorithm was used to solve eight real-world optimization problems.

The structure of the remainder of this paper is as follows: Related studies on
metaheuristic algorithms are presented in Sect. 2. Section 3 provides a detailed intro-
duction to the proposed LEA. Section 4 tests and analyzes the LEA on CEC2017
and CEC2022 benchmark functions. In Sect. 5, the LEA is applied to eight real-
world optimization problems. Section 6 is the conclusion of this paper and the future
research direction.

2 � Related studies

2.1 � Classification of metaheuristic algorithms

There are hundreds of metaheuristic algorithms, most inspired by nature. Among the
many algorithms, the swarm intelligence class has the largest number of algorithms
[8]. Generally, these algorithms are bifurcated into two primary categories: single-
solution-based and population-solution-based metaheuristics. The classification of
the algorithms is given in Fig. 1.

Current single-solution-based metaheuristic algorithms include the simulated
annealing (SA) [9], the tabu search (TS) [10], the guided local search (GLS) [11],
the iterated local search (ILS) [12], the random search (RS) [13], the variable neigh-
borhood search (VNS) [14], and the large neighborhood search (LNS) [15].

Fig. 1   Classification of metaheuristic algorithms

	 Y. Gao et al.

1 3

Population-solution-based metaheuristics are typically categorized into four
distinct groups because of the different search methods, i.e., evolution-based
algorithms, swarm-based algorithms, physics/chemistry-based algorithms, and
mathematics-based algorithms.

Evolution-based algorithms draw inspiration from the genetic evolution of
organisms. Compared with traditional optimization algorithms such as calculus-
based methods and exhaustive methods, these algorithms are a mature global
optimization method with high robustness and wide applicability. It has the char-
acteristics of self-organization, self-adaptation, and self-learning, which can
effectively deal with complex problems that are difficult to be solved by tradi-
tional optimization algorithms regardless of the nature of the problem. Genetic
algorithm (GA) [16] is an optimization model that simulates Darwin’s theory of
biological evolution, which originates from the simulation of behaviors such as
chromosomal crossover variation, acting in the genetic space where information
is encoded. Such algorithms also include the evolutionary programming (EP)
[17], the evolutionary strategy (ES) [18], the genetic programming (GP) [19], the
differential evolution (DE) [20], the gene expression programming (GEP) [21],
the biogeography-based optimization (BBO) [22], the differential search (DS)
[23], the Wildebeests herd optimization (WHO) [24], and the human felicity
algorithm (HFA) [25].

Swarm intelligence-based algorithms are a common algorithm in computing
intelligence. These algorithms, for instance, simulate the natural behavior of fish,
birds, wolves, and bacteria in nature. They utilize information exchange and coop-
eration among groups, optimizing through simple yet limited interactions among
individuals. In 1992, M. Dorigo et al. proposed the ant colony optimization (ACO)
[26] by simulating an ant colony to choose the shortest path from an anthill to a
food source for obstacle avoidance. In 1995, J. Kennedy et al. proposed the particle
swarm optimization (PSO) [27] inspired by the predatory behavior of bird flocks.
Others have since proposed the bacterial foraging (BF) algorithm [28], the moth
flame optimization (MFO) [29], the whale optimization algorithm (WOA) [30], the
spotted hyena optimizer (SHO) [31], the butterfly optimization algorithm (BOA)
[32], the Harris hawk optimization (HHO) [33], the tunicate swarm algorithm (TSA)
[34], the African vultures optimization algorithm (AVOA) [35], the snake optimizer
(SO) [36], the white shark optimizer(WSO) [37], the dwarf mongoose optimization
(DMO) [38], the flying foxes optimization (FFO) [39], the escape bird search (EBS)
[40], the FOX optimizer (FOX) [41], the walrus optimizer (WO) [42], and the snow
geese algorithm (SGA) [43].

Physics/chemistry-based algorithms are inspired by the major physics and chem-
istry rules found in the universe. These rules usually constrain the interaction of
searching individuals in such methods. Moreover, most of these laws are related to
gravity, electromagnetic force, chemical reaction, etc. Examples of these algorithms
include the Big Bang–Big Crunch (BBBC) [44], the gravitational search algorithm
(GSA) [45], the chemical reaction optimization (CRO) [46], the artificial chemical

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

reaction optimization algorithm (ACROA) [47], the black hole (BH) algorithm [48],
the multi-verse optimizer (MVO) [49], the thermal exchange optimization (TEO)
[50], the Archimedes optimization algorithm (AOA) [51], the equilibrium opti-
mizer (EO) [52], the string theory algorithm (STA) [53], and the atomic orbit search
(AOS) [54].

Mathematics-based algorithms are a new type of metaheuristic algorithms that
have been gradually proposed in recent years for classification. It is not inspired by
the complex group life of species or some difficult physical phenomena like other
metaheuristic algorithms but is mainly inspired by the arithmetic laws or some basic
mathematical formulas in the field of mathematics. For example, sine–cosine algo-
rithm (SCA) [55], proposed by Seyedali Mirjalili in 2016, enables each individual
to adjust the direction of motion and thus search the whole space according to the
fluctuation changes of sine and cosine functions, which enables effective global
exploration. In recent years, scholars have also proposed the gradient-based opti-
mizer (GBO) [56], the Runge–Kutta optimizer (RUN) [57], the arithmetic optimiza-
tion algorithm (AOA) [58], the weighted mean of vectors (INFO) algorithm [59],
the Lévy flight distribution (LFD) [60], the PID-based search algorithm (PSA) [61],
and the cubature Kalman optimizer (CKO) [62].

2.2 � Basic elements of metaheuristic algorithms

The solution process of metaheuristic algorithms is usually divided into initializa-
tion and iterative optimization. The initialization phase usually consists of initial-
izing the parameters, creating a population and a vector containing the values of
the objective function. Moreover, the iterative optimization phase consists mainly
of selecting guide individual, searching (exploring and exploiting), and updating the
population. Note that most of these descriptions are for population-solution-based
metaheuristic algorithms.

There are many ways to initialize the population, the most common method is to
initialize it randomly in the search space using random numbers obeying a uniform
distribution. In addition, initializing the population by chaotic map [63] is an effec-
tive improvement, which usually leads to a more even distribution of the popula-
tion. A more comprehensive description of population initialization methods can be
found in the literature [64].

Once the population has been initialized, selection of guide individuals generally
begins. Selection methods used by metaheuristic algorithms can be generally cat-
egorized into three groups: random selection methods, probabilistic selection meth-
ods, and greedy selection methods. In addition, fitness–distance balance (FDB) [65]
has been proposed as a greedy selection method in recent years and has successfully
improved many algorithms. In the face of constrained optimization problems, these
methods mentioned above will not consider whether the best individual violates the

	 Y. Gao et al.

1 3

constraints when choosing the guided individual. To solve this problem well, Burcin
et al. proposed the fitness–distance–constraint-based guide selection method [66].

The search operation of different algorithms varies because of the design of
the formulas. In general, many strategies are employed to balance the exploration
and exploitation of the algorithm. A popular strategy is to use Lévy flight [67] to
increase the possibility of the algorithm jumping out of the local optimal solutions
and drive the algorithm to explore. In addition, random walk [68], adaptive weight-
ing [69], double learning [70], etc. are also used to improve search quality. There is
also linear population size reduction [71] mechanism in population size.

In metaheuristic algorithms, the updating mechanism of the population considers
only the fitness or directly retains the new individuals to the next generation. For exam-
ple, the GBO [56] retains individuals with good fitness value. Besides, the PSA [61]
directly retains all newly produced individuals into the next generation. These methods,
while simple and commonly applied, may suffer from the problem of premature con-
vergence of the algorithm due to improper selection of individuals. Surprisingly, the
natural survivor method (NSM) [72] proposed by Hamdi Tolga Kahraman et al. avoids
premature convergence of algorithms to some extent. NSM calculates scores that repre-
sent an adaptation of an individual to nature to identify survivors, discarding the greedy
survival process based on fitness values.

3 � Love Evolution Algorithm

This section focuses on the inspiration, mathematical model, and pseudocode of the
proposed algorithm. A theoretical analysis of time complexity and space complexity is
also given.

3.1 � Inspiration

3.1.1 � Stimulus‑value‑role theory

Falling in love is an intimate relationship that a person is able to establish autono-
mously, voluntarily and freely in the course of his or her life, and it is an expression of
adoration between people of the opposite or the same sex. An influential psychological
theory of relationships was proposed by the American psychologist Murstein in 1970:
the stimulus–value–role (SVR) theory [7]. SVR theory divides falling in love (marriage
choice) into three phases, which are the stimulus phase, the value phase, and the role
phase. The stimulus phase includes value satisfaction through visual, auditory, and non-
interactive means. The value phase consists of values appreciated through verbal inter-
action. The role phase involves the couple’s ability to function in mutually assigned
roles.

In every relationship, whether it fails or succeeds, both partners change to a greater
or lesser extent. This change may be positive or negative. However, it is undeniable
that on the road to finding love, we have more or less progressed in terms of our
minds, perceptions and so on. The SVR theory provides an important perspective and

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

analytical path for us to explain meeting–loving–getting along. It is also enlightened
that the process of falling in love bears some similarity to the optimization process of
the metaheuristic algorithm.

3.1.2 � Abstractions and metaphors

Variable Different people have different temperaments, personalities, hobbies and so
on. In this paper, these are uniformly called the characteristics of a person. Then, a
certain characteristic is abstracted as a variable of a certain dimension.

Candidate solution Obviously, the happiness of both partners in the relationship
process is closely related to these characteristics. Therefore, the entire set of charac-
teristics that a person possesses is abstracted into a candidate solution.

Objective function value The combination of these characteristics affects all
aspects of a person and determines a person’s happiness. Thus, the happiness degree

Fig. 2   Structure of the optimization process

	 Y. Gao et al.

1 3

of a particular person is abstracted as the objective function value of a particular
candidate solution.

The best solution In the course of falling in love, people’s characteristics pro-
gress. Thus, the characteristics of the best people in history are metaphorically used
as the best solution. Then, a particular best characteristic can be likened to a particu-
lar variable of the best solution.

Optimization process Inspired by SVR theory, the optimization process of the
proposed algorithm is divided into three phases: stimulus phase, value phase, and
role phase. Inevitably, breakups will occur during these three phases. After the
breakup, both partners will reflect and improve. This situation is abstracted as reflec-
tion operation. The structure of the optimization process is shown in Fig. 2.

3.2 � Mathematical model and algorithm

3.2.1 � Initialization

The optimization problem usually consists of a set of decision variables, constraints
and an objective function. It may be assumed that the number of decision variables
is d and the upper and lower bounds of the variables are � and � , respectively (1
row and d columns). The maximum number of function evaluations (MaxFEs) is
denoted as T  . Since the number of people in love is two, the number of people in the
population should be an even number. This does not prevent optimization, so it is
reasonable to specify an even number of people n for this algorithm. The population
at the initial moment � is

where � is a matrix of n rows and d columns composed of random numbers between
0 and 1. Then � is a matrix of n rows and d columns. Its matrix form is

Taking the minimization problem as an example, the happiness degree of each
person is � . The smaller the � , the happier people are. Then, the characteristics of
the best people in history is defined as

(1)� = (� − �) ⋅ � + �,

(2)� =

⎛
⎜⎜⎜⎜⎝

x1,1 x1,2 ⋯ x1,d−1 x1,d
x2,1 x1,2 ⋯ x2,d−1 x2,d
⋮

xn−1,1

⋮

xn−1,2

⋱

⋯

⋮

xn−1,d−1

⋮

xn−1,d
xn,1 xn,2 ⋯ xn,d−1 xn,d

⎞
⎟⎟⎟⎟⎠
n×d

(3)� = �find(�=min (�))

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

where min (⋅) is the function that takes the minimum value and find(⋅) is the function
that gets the index of the equal values of � and min (�).

3.2.2 � Encounter

Consider the random nature of people’s acquaintance and the fact that this random-
ness may be able to increase the diversity of the proposed algorithm. A randomized
strategy is used in the encounter, i.e., the romantic partners are generated randomly.
The generation method is as follows

where randperm(d) denotes the random integer arrangement that generates 1 to d;
and � and � are the indexes of the love partners � and � , respectively. Then � and �
can be expressed as

Apparently, �i and �i are a couple, i = 1, 2,… n∕2 . In this way, the population is
divided into two parts, i.e., � ∪ � = �.

3.2.3 � Stimulus phase

During the stimulus phase, both partners are stimulated by their respective appear-
ances, behaviors, and personalities. Understanding at this phase is generally superfi-
cial and hardly makes it possible for the respective characteristics to be influenced.
Therefore, this phase does not involve updating of characteristics. In other words, no
candidate solutions are updated.

However, at this phase, an acceptance degree was proposed to measure the fit
between the partners during the stimulus phase. Since the two partners at this phase
know each other superficially and do not have the knowledge to explore the "charac-
teristics" in depth, the acceptance degree only takes into account the degree of prox-
imity to the value of the objective function. The acceptance degree � is defined as

where �� is a vector of n∕2 rows and 1 column consisting of 0.5 to 1.5 random num-
bers; �� and �� are the happiness degrees of � and � ( n∕2 rows and 1 column),

(4)

⎧
⎪⎨⎪⎩

� = randperm(d)

� =
�
�1, �2,… , �n∕ 2

�
� =

�
�n∕ 2+1, �n∕ 2+2,… , �n

�

(5)� = ��;� = ��

(6)

{
� = �� ⋅

(
�� −��

)
⋅
(
�� −��

)

� = �∕(max (�) +min (�) + �)

	 Y. Gao et al.

1 3

respectively; � is a very small number greater than 0; and max (⋅) is the function that
takes the maximum value. The �� ensures that partners with smaller differences in
well-being are also likely to perform reflective operation and partners with larger
differences in well-being are likely to enter the next phase. This operation favors
diversity.

When the acceptance degree is greater than �c (called acceptance rate, equal to
0.5), it is considered that the two partners break up and proceed to the reflection
operation; otherwise, it is considered that the two partners continue to be in love and
enter the value phase.

3.2.4 � Reflection operation

After the breakup, the i th couple’s reflection on the j th characteristic should be at
the j th characteristic itself. This behavior is defined in Eq. (7).

where sA
ij
 ( sB

ij
 ) denotes the self-reflection operator of the i th � ( � ) for the j th charac-

teristic; and �A and �B are both a random number from − 1.5 to 1.5.
The enhancement of the j th characteristic may be related to other characteristics

in addition to the j th characteristic. An inspiring example is that if a person is a
quiet character (one characteristic), then his hobby paintings (another characteristic)
may be landscape paintings; if the person is a fanatic character (one characteristic),
then his hobby paintings (another characteristic) may be crazy and abstract. The for-
mula for this behavior is given in Eq. (8).

where � is called learning operator; and z and k are random integers from 1 to d.
In order to really enhance the characteristics, make both characteristics mutate on

the basis of the best characteristics. The definition of this behavior can be obtained
by combining Eqs. (7) to (8):

where � is called the characteristic distance and is defined in Eq. (10).

As the number of iterations increases, the candidate solutions get closer to the
best solution, which in turn causes � to decrease gradually. This change can help
the proposed algorithm shift from exploration to exploitation, and it may be able to
exhibit different exploration and exploitation behaviors for different problems. This
phase is shown schematically in Fig. 3.

(7)sA
ij
= �A

�ij

�ij + �
; sB

ij
= �B

�ij

�ij + �

(8)� =
1

2

(
�iz

�z − �z
+

�ik

�k − �k

)

(9)�ij = �j + �sA
ij
�;�ij = �j + �sB

ij
�

(10)� =
1

nd

∑
i

∑
j

‖‖‖�ij −�j
‖‖‖2 + �

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

3.2.5 � Value phase

When the acceptance degree (defined in Eq. (6)) is less than 0.5, the partners enter
the value phase. The value phase will take into account deeper thoughts and behav-
iors, which involves a change in characteristics. Equation (11) uses the convolution
to define the convolution operator.

The convolution operator �1 , �2 , and �3 obtained from the convolution of
[
�ij,�j

]

and
[
�j,�ij

]
 can be specifically expressed as

After that, Eq. (13) defines the depth operator to inscribe the value phase to
understand each other deeply and change the characteristics.

(11)
[
�1,�2,�3

]
=
[
�ij,�j

]
∗
[
�j,�ij

]

(12)�1 = �j�ij; �2 = �2
j
+ �ij�ij; �3 = �j�ij

(13)�A = ‖‖�2 − �1
‖‖2; �B = ‖‖�2 − �3

‖‖2

Fig. 3   The process of the reflection operation

	 Y. Gao et al.

1 3

At this phase, the change in the characteristics of both partners is defined in
Eq. (14).

where �A and �B are random numbers between 0 and 1; and �A and �B are random
numbers that obey the standard normal distribution. The value phase is shown sche-
matically in Fig. 4.

3.2.6 � Adaptation degree

After the value phase, adaptation degree � is defined in Eq. (15) to determine which
couples are able to enter the role phase.

(14)�ij = �A�ij + �A�A; �ij = �B�ij + �B�B

(15)�i =
rp�i

d�

∑
j

‖‖‖�ij − �ij
‖‖‖2

Fig. 4   The process of the value phase

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

where rp is a vector of n∕2 rows and 1 column consisting of 0.5 to 1.5 random num-
bers, and it has the same role as �� defined in Eq. (6). When �i is less than �p (called
adaptation rate, equal to 0.5), it indicates that �i and �i are very close, at which
point the role phase is entered. Otherwise, both partners are considered broken up
and the reflection operation is executed.

3.2.7 � Role phase

The inspired behaviors of the role phase are assigning roles and complementing
each other. Both partners more or less want the other to be a certain role as they
envision it. Considering this behavior, the role operator operating on characteristics
is defined in Eq. (16).

where h is called the convergence factor, which is defined in Eq. (17).

where hmax and hmin are convergence constants and t is the number of function evalu-
ations (FEs). From the analysis, h is a linearly decreasing function with t.

The update of the characteristics of the role stage is defined in Eq. (18).

(16)

⎧
⎪⎨⎪⎩

�i = �i ⋅ �i

�ij =
�ij −min

�
�i
�

max
�
�i
�
−min

�
�i
�
+ �

+ h

(17)h = (1 − t∕T)
(
hmax − hmin

)
+ hmin

Fig. 5   Process of the role phase

	 Y. Gao et al.

1 3

where �A and �B are random numbers obeying the standard normal distribution.
The schematic of the role phase is shown in Fig. 5. The role of h in Eq. (16) is

to balance exploration and exploitation. If the effect of � is ignored, �ij takes values
between h and 1 + h . In the early stage of the iteration, the value of h is larger and
more values greater than 1 in �i are computed. This means that the main tendency
is to explore. As the number of iterations increases, the value of h decreases, which
means that progressively more and more values in �i are less than 1. This implies a
gradual shift from exploration to exploitation.

3.2.8 � Update of the population

In this paper, two formulas for the cross-boundary processing of �ij and �ij are
given, defined in Eqs. (19) and (20).

where mod denotes the modulo operation, and mod(x, y) returns the remainder after
x is divided by y; and � is used to prevent the upper or lower bounds from being
equal to 0. Equation (19) retains a portion of the search information while perform-
ing transgression processing.

After a round of iterations, a new population is created (i.e., �=[�;�] ). The new
population will completely replace the old population into the next cycle. The flow-
chart of the proposed algorithm is shown in Fig. 6. Moreover, the pseudocode of the
algorithm is provided in Algorithm 1.

(18)�ij = �j + �A��ij; �ij = �j + �B��ij

(19)

�ij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�j +
(

�j − �j
)
mod

(

�ij,�j + �
)

�j + �
, �ij > �j

�ij, �j < �ij < �j

�j +
(

�j − �j
)
mod

(

�ij, �j + �
)

�j + �
, �ij < �j

;

�ij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�j +
(

�j − �j
)
mod

(

�ij, �j + �
)

�j + �
, �ij > �j

�ij, �j < �ij < �j

�j +
(

�j − �j
)
mod

(

�ij, �j + �
)

�j + �
, �ij < �j

(20)�ij =

⎧⎪⎨⎪⎩

�j, �ij > �j

�ij, �j < �ij < �j

�j, �ij < �j

;�ij =

⎧⎪⎨⎪⎩

�j, �ij > �j

�ij, �j < �ij < �j

�j, �ij < �j

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

Algorithm 1   Love Evolution Algorithm

1. Initialize the population size n, the MaxFEs T and the FEs t = 0

2. Initialize the number of characteristics d, the upper boundary u, the lower boundary l, and the function F

3. Create the population X using Eq. (1) %% Create the population

4. H = F(X) %% Create the vector of happiness degree

5. Select the characteristics of the best people in history G from the population

6. while t < T %% Main loop

7. Calculate the convergence factor h using Eq. (17)

8. Population X is randomly and equally divided into A and B using Eqs. (4) to (5) % Encounter

9. Calculate the acceptance degree c using Eq. (6) % Stimulus phase

10. for i = 1:n/2

11. if ci < λc

12. for j = 1:d % Value phase

13. Update the Aij and Bij using Eqs. (12) to (14)

14. Update the Aij and Bij using Eq. (19)

15. end for
16. t = t + 1; if t > T; break; end if
17. Select the characteristics of the best people in history G from the population

18. Calculate the adaptation degree pi using Eq. (15)

19. if pi > λp

20. for j = 1:d % Reflection operation

21. Update the Aij and Bij using Eqs. (7) to (10)

22. end for
23. else % Role phase

24. Calculate the role operator ξi using Eq. (16)

25. for j = 1:d

26. Update the Aij and Bij using Eq. (18)

27. Update the Aij and Bij using Eq. (20)

28. end for

29. end if
30. t = t + 1; if t > T; break; end if
31. Select the characteristics of the best people in history G from the population

32. else
33. for j = 1:d % Reflection operation

34. Update the Aij and Bij using Eqs. (7) to (10)

35. Update the Aij and Bij using Eq. (20)

36. end for
37. t = t + 1; if t > T; break; end if
38. Select the characteristics of the best people in history G from the population

39. end if

40. end for
41. X = [A; B] %% Update the population

42. end while

43. return G

	 Y. Gao et al.

1 3

Fig. 6   Flowchart of the proposed Love Evolution Algorithm

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

3.3 � Theoretical analysis of time and space complexity

Time complexity and space complexity are two important metrics to evaluate the
performance of an algorithm. The time complexity of the LEA is mainly influenced
by three factors: the population size (n), the maximum number of iterations (T) and
the number of variables (d) for solving the problem. In the proposed algorithm, the
initialization problem requires O(nd). During the iterative process, the computation
requires O(Tnd). Therefore, the time complexity of the LEA is O(Tnd). The spatial
complexity of the LEA is mainly affected by the population size (n) and the number
of variables (d) for solving the problem. In the proposed algorithm, the features of
the stored population occupy the main memory space. Thus, the space complexity
of the LEA is O(nd).

4 � Experimental results and discussion

The section focuses on comparing and analyzing the test results of the LEA and
some state-of-the-art metaheuristic algorithms on the CEC2017 and CEC2022
benchmark functions.

4.1 � Experimental setup

This study implements all algorithms using MATLAB R2023b on a computer
with 64-bit Windows 11. The CEC2017 benchmark functions [73] are quite chal-
lenging test sets. It greatly simulates the optimization problems in the real world.
Among them, F1 and F3 are unimodal functions, F4–F10 are multimodal functions,
F11–F20 are hybrid functions, and F21–F30 are composition functions. The dimen-
sion is set to 50. Besides, the profiles of the CEC2017 benchmark functions are
shown in Table 1. Moreover, there are a total of 12 single-objective test functions
with boundary constraints in the CEC2022 benchmark functions [74]. These func-
tions are unimodal function (F1), basic functions (F2–F5), hybrid functions (F6–F8)
and composition functions (F9–F12). The dimensions of two experiments on the
CEC2022 benchmark functions are set to 10 and 20, respectively. In addition, the
CEC2022 benchmark functions are described in Table 2.

To verify the superiority of the proposed algorithm, the nutcracker optimiza-
tion algorithm (NOA) [75], the golden jackal optimization (GJO) [76], the atomic
orbital search (AOS) [54], the tunicate swarm algorithm (TSA) [34], the seagull
optimization algorithm (SOA) [77], the Harris hawk optimization (HHO) [33], and
the random drift particle swarm optimization (RDPSO) [78] are compared with the
proposed LEA on the CEC2017 benchmark functions. The population size of these
algorithms is set to 50. Furthermore, the maximum number of function evaluations
(MaxFEs) is 500,000 (10,000* dimensions). The settings of other parameters are
shown in Table 3.

Further, some strong algorithms are used to compare with the LEA on the
CEC2022 benchmark functions. These algorithms are the success history-based

	 Y. Gao et al.

1 3

adaptive differential evolution with linear population size reduction (L-SHADE)
[71], the adaptive L-SHADE (AL-SHADE) [79], the L-SHADE with semi-param-
eter adaptation hybrid with CMA-ES (L-SHADE-spacma) [80], the adaptive fit-
ness–distance balance-based artificial rabbits optimization (AFDB-ARO) [81], the
fitness–distance balance-based adaptive guided differential evolution (FDB-AGDE)
[82], the fitness–distance balance-based adaptive gaining–sharing knowledge (FDB-
AGSK) [83], and the fitness–distance balance-based phasor particle swarm opti-
mization (FDB-PPSO) [84]. L-SHADE, AL-SHADE, and L-SHADE-spacma are

Table 1   A brief description of the CEC2017 benchmark functions

Search range: [− 100, 100]D

No. Type Function Minimum

F1 Unimodal function Shifted and rotated bent cigar function 100
F3 Unimodal function Shifted and rotated Zakharov function 300
F4 Multimodal function Shifted and rotated Rosenbrock’s function 400
F5 Multimodal function Shifted and rotated Rastrigin’s function 500
F6 Multimodal function Shifted and rotated expanded Scaffer’s F6 function 600
F7 Multimodal function Shifted and rotated Lunacek Bi_Rastrigin function 700
F8 Multimodal function Shifted and rotated non-continuous Rastrigin’s function 800
F9 Multimodal function Shifted and rotated levy function 900
F10 Multimodal function Shifted and rotated Schwefel’s function 1000
F11 Hybrid function Hybrid function 1 (N = 3) 1100
F12 Hybrid function Hybrid function 2 (N = 3) 1200
F13 Hybrid function Hybrid function 3 (N = 3) 1300
F14 Hybrid function Hybrid function 4 (N = 4) 1400
F15 Hybrid function Hybrid function 5 (N = 4) 1500
F16 Hybrid function Hybrid function 6 (N = 4) 1600
F17 Hybrid function Hybrid function 6 (N = 5) 1700
F18 Hybrid function Hybrid function 6 (N = 5) 1800
F19 Hybrid function Hybrid function 6 (N = 5) 1900
F20 Hybrid function Hybrid function 6 (N = 6) 2000
F21 Composition function Composition function 1 (N = 3) 2100
F22 Composition function Composition function 2 (N = 3) 2200
F23 Composition function Composition function 3 (N = 4) 2300
F24 Composition function Composition function 4 (N = 4) 2400
F25 Composition function Composition function 5 (N = 5) 2500
F26 Composition function Composition function 6 (N = 5) 2600
F27 Composition function Composition function 7 (N = 6) 2700
F28 Composition function Composition function 8 (N = 6) 2800
F29 Composition function Composition function 9 (N = 3) 2900
F30 Composition function Composition function 10 (N = 3) 3000

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

recognized as strongly competitive algorithms. Besides, AFDB-ARO, FDB-AGDE,
FDB-AGSK, and FDB-PPSO are strong algorithms that have been improved using
fitness–distance balance-based guide mechanism. Comparison with these algorithms
better demonstrates the competitive nature of the LEA. In both experiments, the
population size is set to 50. Moreover, the MaxFEs is 1,000,000 (20 dimensions),
respectively. The settings of other parameters are given in Table 4.

Table 2   A brief description of the CEC2022 benchmark functions

Search range: [− 100, 100]D

No. Type Function Minimum

F1 Unimodal function Shifted and full rotated Zakharov function 300
F2 Basic function Shifted and full rotated Rosenbrock’s function 400
F3 Basic function Shifted and full rotated expanded Schaffer’s F6 function 600
F4 Basic function Shifted and full rotated non-continuous Rastrigin’s function 800
F5 Basic function Shifted and full rotated levy function 900
F6 Hybrid function Hybrid function 1 (N = 3) 1800
F7 Hybrid function Hybrid function 2 (N = 6) 2000
F8 Hybrid function Hybrid function 3 (N = 5) 2200
F9 Composition function Composition function 1 (N = 5) 2300
F10 Composition function Composition function 2 (N = 4) 2400
F11 Composition function Composition function 3 (N = 5) 2600
F12 Composition function Composition function 4 (N = 6) 2700

Table 3   Parameter settings for algorithms experimented on the CEC2017 benchmark functions

Algorithm Parameter Value Algorithm Parameter Value

LEA Convergence constant hmax 0.7 AOS Maximum number of nucleus
layers

10

Convergence constant hmin 0 Photon rate PR 0.1
Acceptance rate λc 0.5 TSA Initial speed Pmin 1
Adaptation rate λp 0.5 Subordinate speed Pmax 4

NOA Probability δ 0.05 HHO Constant of levy flight β 1.5
Probability Pa2 0.2 RDPSO Acceleration coefficient c1 2
Probability Prp 0.2 Acceleration coefficient c2 2

GJO Constant c1 1.5 Thermal coefficient α (max) 0.9
Constant of levy flight β 1.5 Thermal coefficient α (min) 0.3

SOA Frequency control parameter fc 2 Drift coefficient β 1.5

	 Y. Gao et al.

1 3

4.2 � Performance comparison

This subsection evaluates the performance of the LEA on the CEC2017 benchmark
functions using the average and variance metrics (Ave and Var, respectively). Also,
the average, variance, minimum, and maximum values (Ave, Var, Min, and Max,
respectively) are used to evaluate the competitiveness of LEAs and powerful algo-
rithms on the CEC2022 benchmark functions.

Table 4   Parameter settings for algorithms experimented on the CEC2022 benchmark functions

Algorithm Parameter Value Algorithm Parameter Value

LEA Convergence con-
stant hmax

0.73 AL-SHADE Maximum popula-
tion size

50

Convergence con-
stant hmin

0 Minimum popula-
tion size

4

Acceptance rate λc 0.5 Historical memory
MCR

0.5

Adaptation rate λp 0.5 Historical memory
MF

0.5

L-SHADE Maximum popula-
tion size

50 Historical memory
size

6

Minimum popula-
tion size

4 p best rate 0.11

Historical memory
size

5 Archive rate 2.6

p best rate 0.11 L-SHADE-spacma L rate 0.8
Archive rate 1.4 Maximum popula-

tion size
50

AFDB-ARO Parameter-less Minimum popula-
tion size

4

FDB-AGDE Parameter-less Historical memory
size

5

FDB-AGSK Maximum popula-
tion size

50 p best rate 0.11

Minimum popula-
tion size

12 Archive rate 1.4

Knowledge factor
pool kf

[0.1,1,0.5,1] First class percent-
age

0.5

Knowledge ratio
pool kr

[0.2,0.1,0.9,0.9] FDB-PPSO Parameter-less

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

4.2.1 � Exploitation and exploration

Unimodal functions have only one strictly optimal solution in the selected interval
and are often used to test the exploitation capability of an algorithm. Moreover, mul-
timodal functions have a large number of locally optimal solutions in the consid-
ered interval. The number of solutions increases with the dimension of the problem.
Therefore, the multimodal functions are commonly used to evaluate the exploration
capability of an algorithm. The results of the LEA and the comparison algorithms
on the CEC2017 unimodal and multimodal functions are given in Table 5.

The Ave and Var of the LEA are minimized on F1 and F3 and are much smaller
in order of magnitude than the comparison algorithms. This indicates that the LEA
has a strong exploitation capability. Considering the exploration capability of the
LEA, the Ave of the LEA are ranked first on F4–F10. In terms of the Var, the LEA
ranks 1st on F4, 3rd on F9, 4th on F7 and F10, 5th on F8, 6th on F5, and 8th on F6.
It can be found that the Ave of the LEA has a large advantage among the competi-
tors, while the Var does not have an advantage. The reason for this phenomenon may
be that the LEA has a greater chance of exploring ideal areas compared to its com-
petitors, which makes the LEA not superior to other algorithms in terms of variance
under the condition of better mean value.

Table 5   Optimization results for CEC2017 unimodal and multimodal functions

Bolded+ values represent the smallest values

F Metrics LEA NOA GJO AOS TSA SOA HHO RDPSO

F1 Ave 9.39E+03 1.40E+11 3.12E+10 4.94E+06 6.52E+10 2.42E+10 3.77E+07 1.36E+11
Var 1.01E+08 1.17E+20 3.34E+19 1.67E+12 1.23E+20 3.45E+19 3.54E+13 7.18E+19

F3 Ave 3.00E+02 2.45E+05 9.51E+04 2.92E+04 1.51E+05 8.11E+04 1.70E+04 2.31E+05
Var 3.94E−09 6.59E+08 1.68E+08 3.94E+07 4.72E+08 2.47E+08 3.39E+07 3.51E+08

F4 Ave 5.18E+02 3.56E+04 4.22E+03 6.28E+02 1.41E+04 2.02E+03 6.27E+02 3.50E+04
Var 2.75E+03 1.08E+07 2.00E+06 3.63E+03 2.37E+07 1.80E+05 2.28E+03 1.36E+07

F5 Ave 7.55E+02 1.35E+03 8.92E+02 8.26E+02 1.01E+03 8.43E+02 8.83E+02 1.33E+03
Var 1.88E+03 7.14E+02 3.86E+03 1.09E+03 7.87E+02 1.91E+03 1.01E+03 9.26E+02

F6 Ave 6.22E+02 7.08E+02 6.46E+02 6.62E+02 6.87E+02 6.51E+02 6.70E+02 7.05E+02
Var 1.03E+02 2.22E+01 7.47E+01 3.02E+01 4.22E+01 5.55E+01 1.18E+01 1.11E+01

F7 Ave 1.14E+03 4.14E+03 1.37E+03 1.59E+03 1.86E+03 1.45E+03 1.77E+03 4.10E+03
Var 7.87E+03 2.75E+04 9.51E+03 1.45E+04 5.50E+03 7.15E+03 7.02E+03 2.91E+04

F8 Ave 1.05E+03 1.65E+03 1.18E+03 1.15E+03 1.34E+03 1.18E+03 1.16E+03 1.63E+03
Var 2.29E+03 1.71E+03 2.47E+03 2.34E+03 1.45E+03 2.20E+03 2.79E+03 9.72E+02

F9 Ave 1.01E+04 5.08E+04 1.54E+04 1.37E+04 2.84E+04 1.37E+04 1.96E+04 4.78E+04
Var 1.07E+07 1.66E+07 2.91E+07 4.25E+06 1.08E+07 1.31E+07 6.66E+06 1.91E+07

F10 Ave 6.84E+03 1.48E+04 9.70E+03 8.42E+03 1.23E+04 9.23E+03 8.32E+03 1.44E+04
Var 7.66E+05 1.28E+05 3.02E+06 1.30E+06 9.22E+05 1.43E+06 6.43E+05 9.96E+04

	 Y. Gao et al.

1 3

4.2.2 � Capability of avoiding locally optimal solutions

Hybrid and composition functions are often considered the most challenging optimi-
zation problems. An algorithm is better able to avoid local optimal solutions when it
achieves some balance between exploitation and exploration. Hence, these functions
are often used to evaluate the capability of an algorithm to avoid local optimal solu-
tions. The optimization results of different algorithms on the CEC2017 hybrid and
composition functions are given in Tables 6 and 7, respectively.

For the hybrid functions, the LEA ranks 1st on F12–F15, F18, and F19 in terms
of the Ave and the Var. Besides, the LEA ranks 2nd in terms of the Ave and the Var
on F11. In addition, on F16 and F17, the LEA is ranked 1st in terms of the Ave. On
F20, the LEA is ranked 1st in terms of the Ave and 3rd in terms of the Var.

For the composition functions, the Ave of the LEA ranks 1st on F21 ~ F30 except
F24. Furthermore, the Var of the LEA ranks 1st on F28–F30, 2nd on F23 and F27.
In worse result is that the LEA is ranked 5th and 8th in F21 and F22 in terms of the
Var, respectively. The LEA, on the other hand, has more chances of jumping out of
the local extremes, which makes the mean of LEA relatively better but the variance
worse. Collectively, the results of LEA on the composition functions are much better
than its competitors.

Overall, on Ave, the optimization results of the LEA are smaller than those of
the competitors. Moreover, the Var of the LEA is similarly smaller than those of

Table 6   Optimization results for CEC2017 hybrid functions

Bolded values represent the smallest values

F Metrics LEA NOA GJO AOS TSA SOA HHO RDPSO

F11 Ave 1.44E+03 2.48E+04 7.33E+03 1.46E+03 1.75E+04 4.21E+03 1.43E+03 2.15E+04
Var 5.18E+03 1.24E+07 4.82E+06 3.77E+03 2.58E+07 2.04E+06 8.98E+03 8.90E+06

F12 Ave 1.18E+07 4.63E+10 7.66E+09 9.26E+07 3.66E+10 2.82E+09 5.30E+07 4.08E+10
Var 4.59E+13 4.89E+19 1.72E+19 2.48E+15 1.45E+20 2.88E+18 5.25E+14 2.87E+19

F13 Ave 1.62E+05 1.63E+10 1.05E+09 2.57E+05 1.50E+10 4.69E+08 1.35E+06 1.52E+10
Var 9.57E+09 9.18E+18 1.72E+18 1.22E+10 7.42E+19 6.50E+17 9.41E+11 5.61E+18

F14 Ave 7.86E+04 1.19E+07 9.61E+05 3.22E+05 1.64E+07 6.65E+05 3.51E+05 8.25E+06
Var 3.43E+09 1.50E+13 5.37E+11 3.17E+10 2.62E+14 5.70E+11 7.44E+10 8.70E+12

F15 Ave 5.94E+04 4.42E+09 1.26E+08 7.15E+04 2.37E+09 2.21E+07 1.82E+05 3.63E+09
Var 9.45E+08 1.33E+18 5.71E+16 4.06E+09 5.02E+18 8.41E+14 6.83E+09 8.32E+17

F16 Ave 3.49E+03 7.56E+03 3.56E+03 3.96E+03 5.13E+03 3.54E+03 4.20E+03 7.30E+03
Var 1.77E+05 1.28E+05 6.46E+04 3.99E+05 5.37E+05 2.16E+05 2.06E+05 1.11E+05

F17 Ave 3.08E+03 7.57E+03 3.41E+03 3.48E+03 5.72E+03 3.22E+03 3.55E+03 7.12E+03
Var 1.51E+05 1.40E+06 2.52E+05 1.06E+05 7.77E+06 7.58E+04 1.76E+05 3.75E+05

F18 Ave 3.79E+05 6.35E+07 8.19E+06 1.48E+06 3.56E+07 3.06E+06 3.54E+06 4.82E+07
Var 2.93E+10 4.04E+14 3.48E+14 8.21E+11 2.01E+15 1.41E+12 9.00E+12 2.31E+14

F19 Ave 2.18E+04 1.75E+09 3.78E+07 2.28E+06 1.28E+09 2.00E+06 5.50E+05 1.46E+09
Var 1.15E+08 2.53E+17 4.89E+15 1.68E+12 1.60E+18 7.25E+12 1.43E+11 9.52E+16

F20 Ave 2.92E+03 4.06E+03 3.10E+03 3.36E+03 3.64E+03 3.22E+03 3.37E+03 4.04E+03
Var 4.60E+04 3.19E+04 6.32E+04 5.38E+04 1.16E+05 1.32E+05 5.59E+04 1.59E+04

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

the comparison algorithms on most composition functions. Although the LEA is
not ranked high in terms of the Var on the F21 and F22 functions, it is in the same
or neighboring order of magnitude with the algorithms ranked 1st. The above
results show that the LEA has a certain capability of avoiding falling into local
optimum.

4.2.3 � Capability of finding optimal solutions

It is generally considered that better optimization results are available when there
is some balance between exploitation and exploration. By comparing the optimi-
zation results of LEA with other algorithms on the CEC2017 benchmark func-
tions, it can be observed that the LEA is usually ranked in the first or top position
on the unimodal, multimodal, hybrid, and composition functions. In order to vis-
ually compare the performance of the different algorithms, boxplot is chosen to
show the quality of the solutions produced by the different algorithms. Figures 7,
8, and 9 give some boxplots of the different algorithms in the CEC2017 bench-
mark functions. On the F3, F4, F7, F12–F15, F18, F19, and F27–F30, the LEA
obtains solutions of higher quality than the competitors with less fluctuation. Sta-
tistically, it is obtained that the LEA is ranked 1st on the Ave of 27 functions and

Table 7   Optimization results for CEC2017 composition functions

Bolded values represent the smallest values

F Metrics LEA NOA GJO AOS TSA SOA HHO RDPSO

F21 Ave 2.56E+03 3.16E+03 2.65E+03 2.73E+03 2.94E+03 2.65E+03 2.82E+03 3.13E+03
Var 2.62E+03 1.19E+03 1.49E+03 4.48E+03 2.98E+03 2.43E+03 5.00E+03 1.15E+03

F22 Ave 8.11E+03 1.64E+04 1.12E+04 1.02E+04 1.46E+04 1.05E+04 1.08E+04 1.62E+04
Var 5.00E+06 7.12E+04 3.14E+06 1.36E+06 3.89E+05 1.17E+06 8.63E+05 1.07E+05

F23 Ave 3.02E+03 4.05E+03 3.19E+03 3.62E+03 3.89E+03 3.07E+03 3.66E+03 4.02E+03
Var 4.41E+03 5.69E+03 6.56E+03 3.39E+04 2.94E+04 2.23E+03 2.24E+04 5.77E+03

F24 Ave 3.22E+03 4.34E+03 3.41E+03 3.91E+03 4.13E+03 3.16E+03 4.21E+03 4.30E+03
Var 1.22E+04 1.15E+04 1.09E+04 4.18E+04 3.42E+04 2.60E+03 4.46E+04 8.66E+03

F25 Ave 3.02E+03 2.39E+04 5.38E+03 3.09E+03 8.54E+03 4.65E+03 3.13E+03 2.35E+04
Var 1.61E+03 6.43E+06 6.62E+05 6.96E+02 1.99E+06 2.56E+05 1.60E+03 3.37E+06

F26 Ave 6.32E+03 1.82E+04 8.94E+03 1.16E+04 1.48E+04 7.29E+03 7.75E+03 1.78E+04
Var 5.34E+05 1.11E+06 9.49E+05 9.71E+05 1.99E+06 3.45E+05 1.14E+07 3.81E+05

F27 Ave 3.46E+03 5.59E+03 3.89E+03 4.15E+03 4.99E+03 3.59E+03 4.07E+03 5.47E+03
Var 7.27E+03 4.37E+04 2.68E+04 8.74E+04 1.77E+05 6.97E+03 1.33E+05 2.95E+04

F28 Ave 3.29E+03 1.35E+04 5.89E+03 3.36E+03 8.19E+03 8.35E+03 3.37E+03 1.30E+04
Var 7.52E+02 5.15E+05 4.17E+05 8.33E+02 1.18E+06 1.15E+06 8.86E+02 4.12E+05

F29 Ave 4.19E+03 1.30E+04 5.39E+03 6.42E+03 1.08E+04 5.49E+03 5.28E+03 1.24E+04
Var 8.34E+04 3.44E+06 2.61E+05 5.27E+05 2.67E+07 3.64E+05 1.92E+05 2.82E+06

F30 Ave 1.57E+06 3.06E+09 2.26E+08 6.93E+07 2.53E+09 1.55E+08 1.64E+07 2.84E+09
Var 2.13E+11 2.77E+17 2.00E+16 7.75E+14 4.66E+18 3.50E+15 1.13E+13 2.72E+17

	 Y. Gao et al.

1 3

2nd on the Ave of 2 functions, which verifies the capability of the LEA to find the
optimal solutions.

4.2.4 � Time complexity analysis

The time complexity analysis methodology defined by the CEC2017 benchmark test
[73] was used to evaluate the time complexity of the LEA. The steps of time com-
plexity analysis are: (1) Run the program defined by Eq. (21) 1,000,000 times when
x = 0.55 to get the time T0; (2) time T1 is obtained by evaluating the Function 18
using 200,000 evaluations in 50 dimensions; (3) the algorithm to be evaluated is

Fig. 7   Boxplots of different algorithms on some CEC2017 unimodal and multimodal functions

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

evaluated on the Function 18 (50 dimensions) for 200,000 to get time T2; (4) execute
step (3) five times and take the average of the five times T2 to get Tmean; and (5) cal-
culate (Tmean − T1)/T0 and analyze.

Table 8 gives information on the computational cost of all algorithms tested on
the CEC2017 benchmark functions. Although the computational cost of the SOA,
the HHO and the RDPSO is much less than that of the LEA, the performance of the
LEA in the CEC2017 benchmark set is much better than that of these three competi-
tors. Therefore, it can be concluded that although the time complexity of LEA is not
dominant, it is acceptable with guaranteed optimization quality.

(21)x = x + x; x = x∕2; x = x × x; x =
√
x; x = ln x; x = ex; x = x∕(x + 2)

Fig. 8   Boxplots of different algorithms on some CEC2017 hybrid functions

	 Y. Gao et al.

1 3

4.2.5 � Comparison with strong algorithms

The CEC2022 benchmark test set encompasses a series of test functions of multiple
dimensions and complexity for testing and evaluating the capabilities of optimiza-
tion algorithms in solving real-world problems. These functions are characterized as
nonlinear, multi-peaked, non-convex, non-derivable and highly complex, which can
fully examine the search capability and robustness of the optimization algorithms.

Tables 9 and 10 show the optimization results of different algorithms on the
CEC2022 benchmark functions (20 dimensions). On the unimodal function F1,
the LEA shows a strong competitive capability. Not only does the LEA have the
smallest Ave, but it also has the smallest Max and Min. On multimodal functions
F2–F5, the results exhibited by the LEA and the strong comparison algorithms are
strongly competitive. The Ave index of the LEA on F2 is even smaller than that of

Fig. 9   Boxplots of different algorithms on some CEC2017 composition functions

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

the L-SHADE, the AL-SHADE, the L-SHADE-spacma, the FDB-AGDE, and the
FDB-PPSO. On F3, the LEA has the smallest Ave, which ranks 1st in the Min. Fur-
thermore, the Min of the LEA is ranked 1st on F2. On the hybrid functions F6 and
F7, the result is comparable to that of the other competitors, although none of the
Ave, the Var, the Max, and the Min of the LEA are ranked 1st. Compared to other
competitors, LEA ranks 1st in the Ave on F8 and F9, and also reaches the smallest
in the Max and the Min on F9 and F11. On F12, the LEA, although not 1st on the all
metrics, achieved acceptably good results compared to the competitors.

From the test results with the strongly competitive algorithms on the CEC2022
benchmark test set, it can be concluded that although the LEA as a whole is not
yet up to the optimization capabilities of these strong algorithms, it can compete
with these algorithms on most of the functions. Figure 10 shows the change in
the percentage of exploration and exploitation of the LEA during the iteration
process using the method defined in the literature [85]. It can be seen that the
LEA exhibits different search behaviors on different functions. Combined with
the numerical results, it can be concluded that the LEA is adaptable on different
problems. Therefore, the proposed LEA is highly competitive and has potential
for further development.

4.3 � Convergence analysis

The ultimate goal of all optimization algorithms is to find the global optimal solu-
tion accurately and quickly. Generally speaking, in the early stages of optimization,

Table 8   Computational cost of the algorithms

Algorithm Properties Result Algorithm Properties Result

LEA T0 0.0707 TSA T0 0.0618
T1 1.0392 T1 1.2537
Tmean 3.1958 Tmean 3.4902
(Tmean − T1)/T0 30.5070 (Tmean − T1)/T0 36.2176

NOA T0 0.0711 SOA T0 0.0786
T1 1.0068 T1 1.3266
Tmean 2.7441 Tmean 3.3869
(Tmean − T1)/T0 24.4396 (Tmean − T1)/T0 26.2041

GJO T0 0.0627 HHO T0 0.0747
T1 1.3163 T1 1.4822
Tmean 3.2417 Tmean 2.8766
(Tmean − T1)/T0 30.6993 (Tmean − T1)/T0 18.6679

AOS T0 0.0709 RDPSO T0 0.0712
T1 1.1482 T1 1.6347
Tmean 3.2758 Tmean 2.6697
(Tmean − T1)/T0 30.0118 (Tmean − T1)/T0 14.5468

	 Y. Gao et al.

1 3

Ta
bl

e 
9  

A
ve

 a
nd

 th
e

Va
r o

f o
pt

im
iz

at
io

n
re

su
lts

 fo
r t

he
 C

EC
20

22
 b

en
ch

m
ar

k
fu

nc
tio

ns

N
o.

M
et

ric
s

LE
A

L-
SH

A
D

E
A

L-
SH

A
D

E
L-

SH
A

D
E−

sp
ac

m
a

A
FD

B
-A

RO
FD

B
-A

G
D

E
FD

B
-A

G
SK

FD
B

-P
PS

O

F1
A

ve
3.

00
E+

02
1.

08
E+

03
3.

00
E+

02
2.

74
E+

03
3.

00
E+

02
3.

00
E+

02
3.

00
E+

02
2.

52
E+

04
Va

r
2.

20
E−

15
1.

02
E+

07
1.

00
E−

27
4.

74
E+

07
1.

07
E−

26
1.

06
E−

26
0.

00
E+

00
1.

06
E+

08
F2

A
ve

4.
34

E+
02

4.
47

E+
02

4.
48

E+
02

4.
47

E+
02

4.
33

E+
02

4.
41

E+
02

4.
12

E+
02

6.
02

E+
02

Va
r

4.
82

E+
02

8.
05

E+
01

3.
25

E+
00

8.
04

E+
01

5.
36

E+
02

3.
43

E+
02

3.
55

E+
02

1.
26

E+
04

F3
A

ve
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

16
E+

02
Va

r
1.

91
E−

01
3.

87
E−

04
1.

18
E−

03
1.

24
E−

03
1.

33
E−

06
3.

96
E−

04
2.

93
E−

21
6.

21
E+

01
F4

A
ve

8.
62

E+
02

8.
13

E+
02

8.
09

E+
02

8.
12

E+
02

8.
69

E+
02

8.
24

E+
02

8.
25

E+
02

8.
49

E+
02

Va
r

3.
37

E+
02

1.
26

E+
01

4.
40

E+
00

9.
04

E+
00

5.
72

E+
02

5.
06

E+
01

2.
26

E+
01

1.
68

E+
02

F5
A

ve
1.

14
E+

03
9.

01
E+

02
9.

00
E+

02
9.

01
E+

02
1.

25
E+

03
9.

02
E+

02
9.

00
E+

02
2.

55
E+

03
Va

r
6.

70
E+

04
7.

34
E−

01
4.

12
E−

02
4.

24
E−

01
7.

75
E+

04
1.

08
E+

01
5.

16
E−

04
5.

60
E+

05
F6

A
ve

8.
73

E+
03

1.
85

E+
03

1.
84

E+
03

1.
87

E+
03

1.
83

E+
03

1.
85

E+
03

1.
80

E+
03

1.
83

E+
08

Va
r

5.
21

E+
07

1.
06

E+
03

9.
54

E+
02

1.
84

E+
03

1.
86

E+
03

3.
01

E+
03

2.
49

E+
00

3.
23

E+
17

F7
A

ve
2.

04
E+

03
2.

02
E+

03
2.

02
E+

03
2.

02
E+

03
2.

05
E+

03
2.

02
E+

03
2.

01
E+

03
2.

12
E+

03
Va

r
3.

12
E+

02
4.

27
E+

01
6.

57
E+

01
4.

07
E+

01
2.

50
E+

02
7.

35
E+

01
3.

59
E+

01
1.

66
E+

03
F8

A
ve

2.
22

E+
03

2.
22

E+
03

2.
22

E+
03

2.
22

E+
03

2.
22

E+
03

2.
22

E+
03

2.
22

E+
03

2.
28

E+
03

Va
r

9.
01

E+
00

2.
42

E−
01

2.
87

E−
01

2.
61

E+
00

1.
02

E+
00

2.
44

E+
01

3.
21

E+
00

5.
96

E+
03

F9
A

ve
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

49
E+

03
2.

48
E+

03
2.

65
E+

03
Va

r
1.

01
E−

06
7.

13
E−

27
0.

00
E+

00
1.

28
E−

25
3.

57
E−

25
3.

30
E+

02
0.

00
E+

00
1.

20
E+

04
F1

0
A

ve
2.

52
E+

03
2.

50
E+

03
2.

51
E+

03
2.

51
E+

03
2.

48
E+

03
2.

51
E+

03
2.

50
E+

03
3.

29
E+

03
Va

r
2.

59
E+

03
2.

37
E+

03
2.

65
E+

03
1.

81
E+

03
6.

05
E+

03
6.

44
E+

02
9.

76
E−

04
1.

08
E+

06
F1

1
A

ve
2.

90
E+

03
2.

91
E+

03
2.

91
E+

03
2.

93
E+

03
2.

86
E+

03
2.

92
E+

03
2.

89
E+

03
4.

44
E+

03
Va

r
1.

27
E+

04
1.

20
E+

03
9.

31
E+

02
7.

68
E+

03
1.

08
E+

04
1.

66
E+

03
1.

50
E+

04
1.

57
E+

06
F1

2
A

ve
2.

95
E+

03
2.

94
E+

03
2.

94
E+

03
2.

95
E+

03
2.

98
E+

03
2.

98
E+

03
2.

93
E+

03
3.

04
E+

03
Va

r
1.

33
E+

02
3.

23
E+

01
9.

30
E+

01
1.

59
E+

02
3.

73
E+

02
1.

39
E+

04
1.

74
E+

00
3.

33
E+

03

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

Ta
bl

e 
10

  
M

in
 a

nd
 th

e
M

ax
 o

f o
pt

im
iz

at
io

n
re

su
lts

 fo
r t

he
 C

EC
20

22
 b

en
ch

m
ar

k
fu

nc
tio

ns

N
o.

M
et

ric
s

LE
A

L-
SH

A
D

E
A

L-
SH

A
D

E
L-

SH
A

D
E-

sp
ac

m
a

A
FD

B
-A

RO
FD

B
-A

G
D

E
FD

B
-A

G
SK

FD
B

-P
PS

O

F1
M

in
3.

00
E+

02
3.

00
E+

02
3.

00
E+

02
3.

00
E+

02
3.

00
E+

02
3.

00
E+

02
3.

00
E+

02
9.

18
E+

03
M

ax
3.

00
E+

02
1.

64
E+

04
3.

00
E+

02
2.

76
E+

04
3.

00
E+

02
3.

00
E+

02
3.

00
E+

02
4.

78
E+

04
F2

M
in

4.
00

E+
02

4.
00

E+
02

4.
45

E+
02

4.
00

E+
02

4.
00

E+
02

4.
00

E+
02

4.
00

E+
02

4.
83

E+
02

M
ax

4.
49

E+
02

4.
49

E+
02

4.
49

E+
02

4.
49

E+
02

4.
49

E+
02

4.
49

E+
02

4.
45

E+
02

1.
02

E+
03

F3
M

in
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

07
E+

02
M

ax
6.

02
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

00
E+

02
6.

44
E+

02
F4

M
in

8.
30

E+
02

8.
07

E+
02

8.
04

E+
02

8.
08

E+
02

8.
30

E+
02

8.
12

E+
02

8.
13

E+
02

8.
27

E+
02

M
ax

9.
21

E+
02

8.
22

E+
02

8.
12

E+
02

8.
19

E+
02

9.
29

E+
02

8.
42

E+
02

8.
32

E+
02

8.
81

E+
02

F5
M

in
9.

09
E+

02
9.

00
E+

02
9.

00
E+

02
9.

00
E+

02
9.

56
E+

02
9.

00
E+

02
9.

00
E+

02
1.

53
E+

03
M

ax
2.

14
E+

03
9.

04
E+

02
9.

01
E+

02
9.

02
E+

02
1.

82
E+

03
9.

18
E+

02
9.

00
E+

02
4.

16
E+

03
F6

M
in

1.
93

E+
03

1.
80

E+
03

1.
80

E+
03

1.
81

E+
03

1.
80

E+
03

1.
80

E+
03

1.
80

E+
03

4.
69

E+
05

M
ax

2.
06

E+
04

1.
94

E+
03

1.
96

E+
03

2.
03

E+
03

2.
04

E+
03

2.
03

E+
03

1.
81

E+
03

2.
22

E+
09

F7
M

in
2.

02
E+

03
2.

00
E+

03
2.

00
E+

03
2.

00
E+

03
2.

02
E+

03
2.

00
E+

03
2.

00
E+

03
2.

05
E+

03
M

ax
2.

09
E+

03
2.

03
E+

03
2.

02
E+

03
2.

03
E+

03
2.

08
E+

03
2.

04
E+

03
2.

02
E+

03
2.

21
E+

03
F8

M
in

2.
22

E+
03

2.
22

E+
03

2.
22

E+
03

2.
21

E+
03

2.
22

E+
03

2.
20

E+
03

2.
21

E+
03

2.
23

E+
03

M
ax

2.
24

E+
03

2.
22

E+
03

2.
22

E+
03

2.
22

E+
03

2.
23

E+
03

2.
22

E+
03

2.
22

E+
03

2.
49

E+
03

F9
M

in
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

53
E+

03
M

ax
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

48
E+

03
2.

56
E+

03
2.

48
E+

03
2.

99
E+

03
F1

0
M

in
2.

50
E+

03
2.

40
E+

03
2.

40
E+

03
2.

40
E+

03
2.

40
E+

03
2.

50
E+

03
2.

50
E+

03
2.

50
E+

03
M

ax
2.

67
E+

03
2.

62
E+

03
2.

63
E+

03
2.

62
E+

03
2.

68
E+

03
2.

64
E+

03
2.

50
E+

03
5.

70
E+

03
F1

1
M

in
2.

60
E+

03
2.

90
E+

03
2.

90
E+

03
2.

90
E+

03
2.

60
E+

03
2.

90
E+

03
2.

60
E+

03
3.

21
E+

03
M

ax
3.

00
E+

03
3.

00
E+

03
3.

00
E+

03
3.

36
E+

03
2.

90
E+

03
3.

00
E+

03
3.

00
E+

03
9.

03
E+

03
F1

2
M

in
2.

94
E+

03
2.

93
E+

03
2.

93
E+

03
2.

93
E+

03
2.

94
E+

03
2.

94
E+

03
2.

93
E+

03
2.

95
E+

03
M

ax
2.

99
E+

03
2.

96
E+

03
2.

98
E+

03
2.

99
E+

03
3.

01
E+

03
3.

59
E+

03
2.

94
E+

03
3.

18
E+

03

	 Y. Gao et al.

1 3

there are sudden changes in the solution, which are more favorable for the algorithm
to explore unknown areas. As optimization progresses, the fluctuation of the solu-
tion decreases appropriately so that an algorithm can focus on exploitation. The F3,
F4, F7, F9, F22, and F27 functions (2 dimensions) of the CEC2017 benchmark test
set are selected to evaluate the convergence behavior of the LEA.

The 2D images, search history, trajectory, and average fitness (the population size
and the maximum number of iterations are set to 30 and 500, respectively) are given
in Fig. 11. Search history and trajectory provides a visual representation of explora-
tion and exploitation. In the search history, the less dense areas are exploration, and
the denser areas are exploitation. It is obvious from F24 that the LEA jumps out of

Fig. 10   Changes in the percentage of exploration and exploitation by the LEA during the iteration pro-
cess

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

the local optimal solution and then quickly converges to the vicinity of the global
optimal solution. It is noteworthy that after 200 iterations, the trajectory graph of
F27 still shows relatively large changes. This indicates that the LEA has the moti-
vation to explore better areas even in the late iterations. It can be noticed that there

Fig. 11   Function images, search history, trajectory, and average fitness on some CEC2017 benchmark
functions

	 Y. Gao et al.

1 3

are two regions of high density in the search history of F1 and that the trajectory of
F1 fluctuates a lot in the early stage and shows large fluctuations between iterations
of 300 and 400. This indicates that the richer population diversity of the LEA can
lead to a greater drive for exploitation. On F5 and F8, the solution fluctuates more in
the early stage, but the location is still clustered in an ideal area. This indicates that
for some complex optimization problems, LEA can quickly explore to have an ideal
area. The average fitness values of all the functions show a decreasing trend with the
number of iterations, which verifies the convergence of the LEA.

Figures 12, 13, and 14 give the convergence curves of the LEA and the com-
petitors for some CEC2017 benchmark test functions. The convergence speed
of the LEA is obviously faster than the other compared algorithms on F1, F3,

Fig. 12   Convergence curves on the unimodal and multimodal functions of the CEC2017 benchmark test
set

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

F5–F10, F12, F18, F19, F22, and F30. On F3, F9, and F15, although the LEA
does not have outstanding convergence speed in the early iterations, it converges
faster in the middle and late iterations, and eventually achieves the best optimi-
zation results as well. In addition, AOS ranks 2nd on F1, F5, F8, F9, F13, F15,
F18, and F22 obviously; HHO ranks 2nd on F3, F10, F12, F19, and F30; and
GJO obviously ranks 2nd no F6 and F7. Specifically, SOA converges slowly in
the early stage, but significantly faster in the middle of the iteration, and also
achieves better optimization results. It can be seen that the NOA, the TSA and
the RDPSO perform the worst and do not achieve good convergence results on
most of the functions. The variation of the convergence curves indicates that the

Fig. 13   Convergence curves on some hybrid functions of the CEC2017 benchmark test set

	 Y. Gao et al.

1 3

LEA converges faster on most of the functions compared to the competitors and
satisfactory optimization results can be obtained.

4.4 � Statistical tests

The optimization results of the metaheuristic algorithm are random. A simple compar-
ison between algorithms only does not indicate algorithmic merit. For this reason, this
section performs statistical tests on the optimization results on the CEC2017 bench-
mark functions. The Wilcoxon signed-rank test [86] is used for statistical testing at a
significance level of 0.05. The original hypothesis H0: The median of the LEA’s 30

Fig. 14   Convergence curves on some composition functions of the CEC2017 benchmark test set

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

test results is greater than the median of 30 test results of a specific comparison algo-
rithm. Alternative hypothesis H1: A comparison algorithm’s median of 30 test results
is greater than the median of 30 test results of the LEA.

Table 11 gives the p-values obtained by Wilcoxon signed-rank test for the LEA
and each comparison algorithms at a significance level of 0.05. From the results, it
can be concluded that the vast majority of p-values are less than 0.05, i.e., the vast
majority of results are accepted for the alternative hypothesis H1, which verifies the
superiority of the LEA.

Table 11   p-values obtained by Wilcoxon signed-rank test at a significance level of 0.05

No. LEA vs.
NOA

LEA vs.
GJO

LEA vs.
AOS

LEA vs.
TSA

LEA vs.
SOA

LEA vs.
HHO

LEA vs.
RDPSO

F1 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11
F3 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11
F4 1.51E−11 1.51E−11 1.42E−08 1.51E−11 1.51E−11 2.98E−09 1.51E−11
F5 1.51E−11 1.08E−10 3.54E−08 1.51E−11 7.15E−09 5.47E−11 1.51E−11
F6 1.51E−11 2.10E−10 1.51E−11 1.51E−11 6.03E−11 1.51E−11 1.51E−11
F7 1.51E−11 6.44E−10 1.51E−11 1.51E−11 2.75E−11 1.51E−11 1.51E−11
F8 1.51E−11 8.88E−11 2.09E−09 1.51E−11 7.32E−11 9.28E−10 1.51E−11
F9 1.51E−11 3.83E−05 8.18E−06 1.51E−11 1.59E−04 1.84E−11 1.51E−11
F10 1.51E−11 4.05E−10 9.30E−07 1.51E−11 7.73E−10 5.78E−08 1.51E−11
F11 1.51E−11 1.51E−11 1.66E−01 1.51E−11 1.51E−11 8.02E−01 1.51E−11
F12 1.51E−11 1.51E−11 5.47E−11 1.51E−11 1.51E−11 7.32E−11 1.51E−11
F13 1.51E−11 1.67E−11 2.36E−04 1.51E−11 2.25E−11 1.51E−11 1.51E−11
F14 1.51E−11 1.30E−10 1.82E−08 1.51E−11 2.50E−09 2.77E−08 1.51E−11
F15 1.51E−11 1.74E−10 3.92E−01 1.51E−11 1.51E−11 9.28E−10 1.51E−11
F16 1.51E−11 3.37E−01 1.03E−03 3.35E−11 2.95E−01 4.77E−07 1.51E−11
F17 1.51E−11 3.49E−03 1.06E−04 2.31E−10 9.79E−02 3.38E−05 1.51E−11
F18 1.51E−11 8.88E−11 9.28E−10 1.51E−11 1.51E−11 2.49E−11 1.51E−11
F19 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11
F20 1.51E−11 3.81E−03 1.54E−08 4.45E−10 4.76E−04 5.05E−09 1.51E−11
F21 1.51E−11 1.98E−08 1.19E−10 1.51E−11 1.76E−07 1.51E−11 1.51E−11
F22 1.51E−11 3.01E−08 3.61E−06 1.51E−11 1.01E−07 1.30E−08 1.51E−11
F23 1.51E−11 1.22E−09 1.51E−11 1.51E−11 2.11E−04 1.51E−11 1.51E−11
F24 1.51E−11 1.29E−07 1.51E−11 1.51E−11 9.76E−01 1.51E−11 1.51E−11
F25 1.51E−11 1.51E−11 5.51E−09 1.51E−11 1.51E−11 3.06E−10 1.51E−11
F26 1.51E−11 1.51E−11 1.51E−11 1.51E−11 3.54E−08 3.39E−02 1.51E−11
F27 1.51E−11 2.04E−11 1.84E−11 1.51E−11 5.97E−07 2.49E−11 1.51E−11
F28 1.51E−11 1.51E−11 1.58E−10 1.51E−11 1.51E−11 2.31E−10 1.51E−11
F29 1.51E−11 6.64E−11 1.51E−11 1.51E−11 8.88E−11 2.04E−11 1.51E−11
F30 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11 1.51E−11

	 Y. Gao et al.

1 3

To further demonstrate the capabilities of the LEA to solve the benchmark test
problems, Friedman test [87] is performed on all algorithms. The ranking results
of each algorithm are shown in Table 12. From the ranking results, LEA ranks 1st,
AOS ranks 2nd, HHO ranks 3rd, GJO ranks 4th, SOA ranks 5th, LFD ranks 6th,
EBS ranks 7th, FHO ranks 8th, SPO ranks 9th, and TSA ranks 10th.

Table 12   Friedman test for
ranking results

FAR is Friedman average rank

No. LEA NOA GJO AOS TSA SOA HHO RDPSO

F1 1 8 5 2 6 4 3 7
F3 1 8 5 3 6 4 2 7
F4 1 8 5 3 6 4 2 7
F5 1 8 5 2 6 3 4 7
F6 1 8 2 4 6 3 5 7
F7 1 8 2 4 6 3 5 7
F8 1 8 5 2 6 4 3 7
F9 1 8 4 3 6 2 5 7
F10 1 8 5 3 6 4 2 7
F11 2 8 5 3 6 4 1 7
F12 1 8 5 3 6 4 2 7
F13 1 8 5 2 6 4 3 7
F14 1 7 5 2 8 4 3 6
F15 1 8 5 2 6 4 3 7
F16 1 8 3 4 6 2 5 7
F17 1 8 3 4 6 2 5 7
F18 1 8 5 2 6 3 4 7
F19 1 8 5 4 6 3 2 7
F20 1 8 2 4 6 3 5 7
F21 1 8 3 4 6 2 5 7
F22 1 8 5 2 6 3 4 7
F23 1 8 3 4 6 2 5 7
F24 2 8 3 4 5 1 6 7
F25 1 8 5 2 6 4 3 7
F26 1 8 4 5 6 2 3 7
F27 1 8 3 5 6 2 4 7
F28 1 8 4 2 5 6 3 7
F29 1 8 3 5 6 4 2 7
F30 1 8 5 3 6 4 2 7
FAR 1.07 7.97 4.10 3.17 6.00 3.24 3.48 6.97
Rank 1 8 5 2 6 3 4 7

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

4.5 � Scalability analysis

Scalability can be used to evaluate the performance of metaheuristic algorithms in
the face of growing problem size, complexity, or resource constraints. Algorithms
are usually considered competitive and better scalable when they can effectively
handle high-dimensional spaces or large-scale problems without sacrificing perfor-
mance and efficiency. In this section, the scalability of the LEA is evaluated using
the CEC2017 benchmark functions (30, 50, and 100 dimensions).

The optimization results are recorded in Table 13. From the analysis, it can
be obtained that (1) on the unimodal functions, the results do not become much
larger as the dimensionality increases (F3 is particularly reflective of this); (2)

Table 13   Optimization results for CEC2017 benchmark functions (30, 50, and 100 dimensions)

No. Metrics 30 50 100 No. Metrics 30 50 100

F1 Ave 7.84E+03 9.39E+03 2.60E+04 F1 Var 5.39E+07 1.01E+08 5.23E+08
F3 Ave 3.00E+02 3.00E+02 3.00E+02 F3 Var 1.13E−10 3.94E−09 4.42E−06
F4 Ave 4.81E+02 5.18E+02 6.47E+02 F4 Var 4.42E+02 2.75E+03 1.28E+03
F5 Ave 6.23E+02 7.55E+02 1.21E+03 F5 Var 7.03E+02 1.88E+03 6.12E+03
F6 Ave 6.06E+02 6.22E+02 6.52E+02 F6 Var 3.07E+01 1.03E+02 2.50E+01
F7 Ave 9.00E+02 1.14E+03 2.13E+03 F7 Var 1.75E+03 7.87E+03 6.18E+04
F8 Ave 9.13E+02 1.05E+03 1.52E+03 F8 Var 6.76E+02 2.29E+03 1.15E+04
F9 Ave 2.98E+03 1.01E+04 2.69E+04 F9 Var 1.56E+06 1.07E+07 2.43E+07
F10 Ave 3.89E+03 6.84E+03 1.44E+04 F10 Var 3.30E+05 7.66E+05 2.29E+06
F11 Ave 1.30E+03 1.44E+03 2.59E+03 F11 Var 3.32E+03 5.18E+03 8.45E+04
F12 Ave 1.98E+06 1.18E+07 4.00E+07 F12 Var 1.34E+12 4.59E+13 2.53E+14
F13 Ave 7.44E+04 1.62E+05 1.28E+05 F13 Var 1.36E+09 9.57E+09 1.80E+09
F14 Ave 8.28E+03 7.86E+04 4.01E+05 F14 Var 1.99E+07 3.43E+09 4.26E+10
F15 Ave 2.10E+04 5.94E+04 1.12E+05 F15 Var 1.50E+08 9.45E+08 2.79E+09
F16 Ave 2.50E+03 3.49E+03 5.65E+03 F16 Var 1.21E+05 1.77E+05 1.93E+05
F17 Ave 2.12E+03 3.08E+03 5.40E+03 F17 Var 3.37E+04 1.51E+05 1.94E+05
F18 Ave 1.97E+05 3.79E+05 7.13E+05 F18 Var 2.12E+10 2.93E+10 7.03E+10
F19 Ave 1.32E+04 2.18E+04 8.26E+04 F19 Var 1.57E+08 1.15E+08 9.57E+08
F20 Ave 2.35E+03 2.92E+03 4.62E+03 F20 Var 2.14E+04 4.60E+04 1.70E+05
F21 Ave 2.41E+03 2.56E+03 3.11E+03 F21 Var 1.03E+03 2.62E+03 8.84E+03
F22 Ave 2.55E+03 8.11E+03 1.73E+04 F22 Var 8.69E+05 5.00E+06 2.61E+06
F23 Ave 2.77E+03 3.02E+03 3.51E+03 F23 Var 7.88E+02 4.41E+03 7.45E+03
F24 Ave 2.96E+03 3.22E+03 4.07E+03 F24 Var 3.21E+03 1.22E+04 1.43E+04
F25 Ave 2.89E+03 3.02E+03 3.27E+03 F25 Var 7.59E+01 1.61E+03 2.97E+03
F26 Ave 5.07E+03 6.32E+03 1.35E+04 F26 Var 3.10E+05 5.34E+05 1.65E+06
F27 Ave 3.23E+03 3.46E+03 3.54E+03 F27 Var 4.37E+02 7.27E+03 6.18E+03
F28 Ave 3.18E+03 3.29E+03 3.38E+03 F28 Var 4.45E+03 7.52E+02 1.99E+03
F29 Ave 3.73E+03 4.19E+03 6.74E+03 F29 Var 2.23E+04 8.34E+04 3.11E+05
F30 Ave 3.44E+04 1.57E+06 8.12E+05 F30 Var 1.79E+08 2.13E+11 7.91E+10

	 Y. Gao et al.

1 3

on the multimodal functions F5 to F10, the growth of the optimization results
of the LEA on all dimensions is not significant, except for F5, F9, and F10; (3)
it is worth noting that the optimization results do not show an order of magni-
tude increase with increasing dimensions on the hybrid functions F11, F13, and
F16–F20; (4) on the composition functions F21, F23, F24, F25, and F27–F29, the
changes in the optimization results are relatively small; and (5) on F30, the result

Fig. 15   Convergence curves of the LEA on some CEC2017 unimodal, multimodal and hybrid functions
(30, 50, and 100 dimensions)

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

reaches its maximum at 50 dimensions and gets decreased again on at 100 dimen-
sions, which may be due to the increase of MaxFEs with the stronger search
capability of the LEA.

Figures 15 and 16 give the convergence curves obtained by the LEA solving part
of the CEC2017 benchmark functions (30, 50, and 100 dimensions). It can be seen
that the convergence curves of F1, F12–F15, F18, F19, and F30 still do not converge
at the later stages. It can be assumed that sufficient MaxFEs have a higher prob-
ability of giving similar results for the LEA in 30, 50, and 100 dimensions. Moreo-
ver, the convergence curves for F3, F4, F11, F17, F25, and F27–F29 level off in
the later stages, but the optimization results do not get much larger with increasing
dimensionality. Some bad performance is reflected in F8, F21, F23, F24, and F26.
On these functions, the LEA tends to converge at a later stage and the optimization
results vary more with increasing dimensions. However, as given in Table 13, these
increases are still within acceptable limits.

Fig. 16   Convergence curves of the LEA on some CEC2017 composition functions (30, 50, and 100
dimensions)

	 Y. Gao et al.

1 3

5 � Applications to real‑world optimization problems

Most practical engineering problems are difficult to solve with more constraints. In
order to test the capability of the LEA to solve real-world optimization problems,
eight engineering problems are selected, which are speed reducer design problem,
pressure vessel design problem, cantilever beam design problem, I-beam design
problem, tubular column design problem, piston lever design problem, rolling ele-
ment bearing design problem, and welded beam design problem. The LEA and its
competitors in Table 3 are run independently 30 times. Furthermore, the optimiza-
tion performance of different algorithms is analyzed through the best of these 30
results.

5.1 � Speed reducer design problem

In a mechanical system, the speed reducer is one of the essential components of the
gearbox. The design of the speed reducer (Fig. 17) is a challenging problem. In this
problem, the weight of the reducer is minimized subject to 11 constraints [88]. The
problem has seven variables, which are the face width of teeth ( z1 ), module of teeth
( z2 ), the number of teeth in the pinion ( p ), length of the first shaft between bearings
( l1 ), length of the second shaft between bearings ( l2 ), the diameter of first shafts ( d1 )

1l 2l

1d

2d

1z 2z

Fig. 17   Schematic diagram of the speed reducer design problem

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

and the diameter of second shafts ( d2 ). The mathematical form of the problem is
given in Eq. (22).

Consider:

Minimize:

Subject to:

Variable range:
2.6 ≤ x1 ≤ 3.6 , 0.7 ≤ x2 ≤ 0.8 , x3 ∈ {17, 18, 19,… , 27, 28} , 7.3 ≤ x4, x5 ≤ 8.3 ,

2.9 ≤ x6 ≤ 3.9 , 5 ≤ x7 ≤ 5.5.
The best results obtained by the LEA and the competitors on the speed reducer

design problem are shown in Table 14. It can be concluded that the LEA achieves
the top ranked result provided that the constraints are satisfied. It is noted that the
LEA far outperformed the NOA, TSA, and RDPSO on this problem. Meanwhile, the
AOS achieved similar results to the LEA on this problem.

� =
[
x1, x2, x3, x4, x5, x6, x7

]
=
[
z1, z2, p, l1, l2, d1, d2

]
.

(22)

f (�) = 0.7854x
1
x2
2

(
3.3333x2

3
+ 14.9334x

3
− 43.0934

)
− 1.508x

1

(
x2
6
+ x2

7

)

+ 7.4777
(
x3
6
+ x3

7

)
+ 0.7854

(
x
4
x2
6
+ x

5
x2
7

)
.

g
1(�) =

27

x
1
x2
2
x
3

− 1 ≤ 0, g
2(�) =

397.5

x
1
x2
2
x2
3

− 1 ≤ 0,

g
3(�) =

1.93x3
4

x
2
x4
6
x
3

− 1 ≤ 0, g
4(�) =

1.93x3
5

x
2
x4
7
x
3

− 1 ≤ 0,

g
5(�) =

√(
745x

4

/
x
2
x
3

)2
+ 16.9 × 106

110x3
6

− 1 ≤ 0,

g
6(�) =

√(
745x

5

/
x
2
x
3

)2
+ 157.5 × 106

85x3
7

− 1 ≤ 0,

g
7(�) =

x
2
x
3

40
− 1 ≤ 0, g

8(�) =
5x

2

x
1

− 1 ≤ 0,

g
9(�) =

x
1

12x
2

− 1 ≤ 0, g
10(�) =

1.5x
6
+ 1.9

x
4

− 1 ≤ 0,

g
11(�) =

1.1x
7
+ 1.9

x
5

− 1 ≤ 0.

	 Y. Gao et al.

1 3

Ta
bl

e 
14

  
B

es
t r

es
ul

ts
 o

f d
iff

er
en

t a
lg

or
ith

m
s f

or
 th

e
sp

ee
d

re
du

ce
r d

es
ig

n
pr

ob
le

m

LE
A

N
O

A
G

JO
A

O
S

TS
A

SO
A

H
H

O
R

D
PS

O

x 1
3.

50
16

3.
52

49
3.

50
19

3.
50

24
3.

54
66

3.
51

02
3.

50
00

3.
54

81
x 2

0.
7

0.
70

16
0.

70
03

0.
7

0.
7

0.
7

0.
7

0.
70

04
x 3

17
17

.1
18

4
17

17
17

.0
33

1
17

17
17

.0
00

1
x 4

7.
32

78
7.

32
39

7.
33

35
7.

3
7.

42
35

7.
36

51
7.

3
7.

37
48

x 5
7.

71
69

7.
83

91
7.

76
53

7.
72

12
8.

3
7.

76
30

8.
03

06
8.

01
36

x 6
3.

35
07

3.
53

86
3.

35
31

3.
35

06
3.

38
47

3.
36

71
3.

35
07

3.
45

98
x 7

5.
28

67
5.

28
95

5.
28

70
5.

28
85

5.
29

87
5.

28
89

5.
29

11
5.

33
64

g 1
−

 2.
16

80
20

−
 2.

70
00

88
−

 2.
19

71
55

−
 2.

17
49

22
−

 2.
60

10
41

−
 2.

23
97

79
−

 2.
15

50
18

−
 2.

58
63

54
g 2

−
 98

.3
56

34
1

−
 11

0.
91

88
85

−
 98

.8
51

62
7

−
 98

.4
73

68
1

−
 10

6.
69

86
07

−
 99

.5
76

24
9

−
 98

.1
35

30
6

−
 10

5.
46

98
49

g 3
−

 1.
88

21
25

−
 2.

86
31

87
−

 1.
88

59
59

−
 1.

92
53

33
−

 1.
89

50
85

−
 1.

89
87

67
−

 1.
92

57
26

−
 2.

32
32

73
g 4

−
 18

.2
97

50
6

−
 17

.5
85

96
3

−
 17

.9
35

33
6

−
 18

.2
92

36
0

−
 14

.5
07

75
4

−
 17

.9
72

79
5

−
 16

.0
79

34
8

−
 16

.8
32

14
4

g 5
−

 0.
10

43
32

−
 16

6.
28

75
88

−
 2.

46
59

11
−

 0.
04

51
05

−
 32

.7
57

40
6

−
 16

.0
63

08
1

−
 0.

12
92

30
−

 10
0.

81
76

44
g 6

−
 0.

00
13

52
−

 1.
34

91
49

−
 0.

13
84

38
−

 0.
89

74
63

−
 5.

69
81

64
−

 1.
07

24
00

−
 2.

10
12

01
−

 23
.5

04
45

9
g 7

−
 28

.1
−

 27
.9

90
18

8
−

 28
.0

94
66

9
−

 28
.1

−
 28

.0
76

80
4

−
 28

.1
−

 28
.1

−
 28

.0
93

79
8

g 8
−

 0.
00

22
33

−
 0.

02
43

16
−

 0.
00

05
07

−
 0.

00
34

17
−

 0.
06

66
19

−
 0.

01
45

39
−

 0.
00

00
03

−
 0.

06
60

88
g 9

−
 6.

99
77

67
−

 6.
97

56
84

−
 6.

99
94

93
−

 6.
99

65
83

−
 6.

93
33

81
−

 6.
98

54
61

−
 6.

99
99

97
−

 6.
93

39
12

g 1
0

−
 0.

40
17

55
−

 0.
11

60
55

−
 0.

40
38

00
−

 0.
37

41
20

−
 0.

44
64

61
−

 0.
41

43
62

−
 0.

37
39

92
−

 0.
28

50
88

g 1
1

−
 0.

00
15

81
−

 0.
12

06
62

−
 0.

04
96

11
−

 0.
00

38
11

−
 0.

57
14

07
−

 0.
04

52
39

−
 0.

31
03

46
−

 0.
24

35
72

f
29

95
.3

60
71

30
87

.4
85

76
29

98
.8

35
61

29
96

.6
88

52
30

48
.9

97
46

30
05

.7
21

16
30

04
.2

33
87

30
82

.9
17

34

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

5.2 � Pressure vessel design problem

In this problem, the ends of the cylindrical container are covered by hemispherical
caps (as shown in Fig. 18). There are four variables and four constraints with the
objective of minimizing the total cost in this problem [89]. The four variables are
thickness of the shell ( Ts ), thickness of the head ( Th ), the inner radius ( R ), and the
length of the cylindrical section of the vessel without the head ( L ). The mathemati-
cal description of the problem is given in Eq. (23).

Consider:
� =

[
x1, x2, x3, x4

]
=
[
Ts, Th,R, L

]
.

Minimize:

Subject to:

Variable range:
x1, x2 ∈ {1 × 0.0625, 2 × 0.0625,… , 99 × 0.0625} , 10 ≤ x3, x4 ≤ 200.
The best results obtained by the different algorithms on the pressure vessel

design problem are shown in Table 15. The LEA, the GJO, the SOA, and the HHO
have obtained similar optimization results. But the LEA is still number one on this
problem.

(23)f (�) = 0.6224x1x3x4 + 1.7781x2x
2
3
+ 3.1661x2

1
x4 + 19.84x2

1
x3.

g1(�) = −x1 + 0.0193x3 ≤ 0,

g2(�) = −x2 + 0.00954x3 ≤ 0,

g3(�) = −�x2
3
x4 −

4

3
�x3

3
+ 1296000 ≤ 0,

g4(�) = x4 − 240 ≤ 0.

Fig. 18   Schematic diagram of the pressure vessel design problem

	 Y. Gao et al.

1 3

Ta
bl

e 
15

  
B

es
t r

es
ul

ts
 o

f d
iff

er
en

t a
lg

or
ith

m
s f

or
 th

e
pr

es
su

re
 v

es
se

l d
es

ig
n

pr
ob

le
m

LE
A

N
O

A
G

JO
A

O
S

TS
A

SO
A

H
H

O
R

D
PS

O

x 1
12

.7
56

0
15

.3
25

0
12

.7
66

2
12

.5
58

2
16

.3
76

6
13

.4
35

6
12

.6
66

0
14

.2
84

9
x 2

6.
81

87
7.

25
89

7.
48

21
6.

54
84

8.
08

50
6.

53
96

6.
71

90
7.

36
43

x 3
42

.0
98

1
41

.8
69

8
42

.0
89

6
42

.0
88

8
51

.2
78

3
42

.0
93

8
41

.8
92

8
43

.8
87

1
x 4

17
6.

64
09

17
9.

61
95

17
6.

75
59

17
6.

76
45

90
.6

52
9

17
6.

72
63

17
9.

20
25

16
8.

71
76

g 1
−

 0.
00

00
1

−
 0.

12
94

1
−

 0.
00

01
7

−
 0.

00
01

9
−

 0.
01

03
3

−
 0.

00
00

9
−

 0.
00

39
7

−
 0.

02
79

8
g 2

−
 0.

03
58

8
−

 0.
03

80
6

−
 0.

03
59

6
−

 0.
03

59
7

−
 0.

01
08

0
−

 0.
03

59
2

−
 0.

03
78

4
−

 0.
01

88
2

g 3
−

 0.
26

40
2

−
 70

9.
23

67
9

−
 56

.8
53

03
−

 45
.9

94
99

−
 17

,6
52

.7
60

52
−

 18
0.

71
96

7
−

 3.
70

71
4

−
 78

,9
83

.1
40

77
g 4

−
 63

.3
59

06
−

 60
.3

80
52

−
 63

.2
44

09
−

 63
.2

35
54

−
 14

9.
34

70
6

−
 63

.2
73

72
−

 60
.7

97
50

−
 71

.2
82

43
f

60
59

.7
57

63
69

81
.9

74
12

60
61

.0
25

31
60

61
.0

82
91

65
35

.3
53

39
60

61
.0

35
61

60
84

.9
34

80
66

06
.4

67
94

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

Fig. 19   Schematic diagram of the cantilever beam design problem

Table 16   Best results of different algorithms for the cantilever beam design problem

LEA NOA GJO AOS TSA SOA HHO RDPSO

x1 6.0112 7.0416 6.0201 6.1425 5.9591 5.9921 6.0464 4.7158
x2 5.2974 4.7512 5.2971 5.1556 5.2226 5.3039 5.2237 16.0349
x3 4.5057 5.9815 4.4796 4.6156 4.5505 4.5222 4.5718 5.4816
x4 3.5112 12.9275 3.5220 3.3931 3.6176 3.5062 3.5074 3.6315
x5 2.1485 2.4502 2.1553 2.1982 2.1474 2.1501 2.1306 2.3615
g − 0.000013 − 0.320301 − 0.000004 − 0.000230 − 0.001517 − 0.000039 − 0.0000002 − 0.071908
f 1.33997 2.06868 1.33998 1.34191 1.34143 1.34001 1.34034 2.01086

Fig. 20   Schematic diagram of the I-beam design problem

	 Y. Gao et al.

1 3

5.3 � Cantilever beam design problem

The problem is an example of structural engineering design for weight optimization
of a cantilever beam with a square section [90]. As depicted in Fig. 19, one end of
the beam is rigidly supported, and the cantilever-free node is affected by force in the
vertical direction. The beam consists of five hollow square blocks. The thickness of
the blocks is kept constant 2∕3 in this problem. Its height (or width) is considered a
decision variable ( x1, x2, x3, x4, x5 ), and the problem can be expressed as Eq. (24).

Minimize:

Subject to:

Variable range:

The best solutions to this problem obtained by the LEA and the comparison algo-
rithms are shown in Table 16. In terms of results, the result obtained by LEA are
better than those of other algorithms. Among them, the optimization results of the
LEA and the GJO are very close, but the LEA still has certain advantages.

5.4 � I‑beam design problem

The optimal design of the I-beam vertical deflection (Fig. 20) is a typical engineer-
ing optimization problem. The target of the optimization is to minimize the verti-
cal deflection of the beam subject to given condition of the cross-sectional area as
well as the stress constraint [91]. This optimization problem covers four decision

(24)f (�) = 0.0624
(
x1 + x2 + x3 + x4 + x5

)
.

g(�) =
61

x3
1

+
37

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

− 1 ≤ 0.

0.01 ≤ xi ≤ 100, i = 1,… , 5.

Table 17   Best results of different algorithms for the I-beam design problem

x1 x2 x3 x4 g1 g2 f

LEA 80 50.0000 0.9 2.3217931 0 − 1.5702280 0.01307411916
NOA 79.6370 47.4508 0.9396 2.3686131 − 4.841887 − 1.3523652 0.01356782111
GJO 80 50 0.9 2.3217916 − 0.000065 − 1.5702273 0.01307412207
AOS 80 50 0.9 2.3217922 − 0.000007 − 1.5702284 0.01307411924
TSA 80 50 0.9 2.3211758 − 0.060534 − 1.5691801 0.01307705751
SOA 80 50 0.9 2.3217895 − 0.000271 − 1.5702238 0.01307413207
HHO 80 50 0.9 2.3217922 − 0.000010 − 1.5702283 0.01307411938
RDPSO 79.7060 37.0861 0.9243 3.1187869 − 0.768549 − 1.0201020 0.01351537425

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

variables, including the width of flange ( b ), the height of section ( h ), the thickness
of the web ( tw ), and the thickness of the flange ( tf ). The maximum vertical deflection
of the beam is PL3

/
48EI , where the beam length ( L ) is 5200 cm and the modulus

of elasticity ( E ) is 523.104 kN∕cm2 . The objective function of the problem and the
constraints are as in Eq. (25).

Consider:

Minimize:

Subject to:

� =
[
x1, x2, x3, x4

]
=
[
b, h, tw, tf

]
.

(25)f (�) =
5000

x3
(
x2 − 2x4

)3/
12 +

(
x1x

3
4

/
6
)
+ 2bx4

(
x2 − x4∕2

)2 .

g1(�) = 2x1x3 + x3
(
x2 − 2x4

)
≤ 300,

g2(�) =
18x2 × 104

x3
(
x2 − 2x4

)3
+ 2x1x3

[
4x2

4
+ 3x2

(
x2 − 2x4

)] +
15x1 × 103(

x2 − 2x4
)
x2
3
+ 2x3x

3
1

≤ 56.

Fig. 21   Schematic diagram of the tubular column design problem

	 Y. Gao et al.

1 3

Variable range:
10 ≤ x1 ≤ 50 , 10 ≤ x2 ≤ 80 , 0.9 ≤ x3 ≤ 5 , 0.9 ≤ x4 ≤ 5.
From Table 17, the best results of the design problem of I-beam can be seen

under the optimization of different algorithms. It is found that the performance of
LEA optimization search is slightly better than the AOS, the HHO, the GJO, the
SOA, the TSA, and even significantly better than the RDPSO and the NOA, which
ranks 1st overall.

5.5 � Tubular column design problem

The optimal design of the tubular column (Fig. 21) is a typical engineering optimi-
zation problem and is an example of how engineers can minimize costs by designing
a uniform column with a tubular cross section to withstand compressive loads [92].
The two main variables of this problem are the average diameter of the column ( d )
and the thickness of the column ( t ). Moreover, the yield stress of this engineering
material is 500 kgf

/
cm2 and the modulus of elasticity is 8.5 × 105 kgf

/
cm2 . The

objective function of the problem and the constraints are as in Eq. (26).
Consider:

Minimize:

Subject to:

� =
[
x1, x2

]
= [b, t].

(26)f (x) = 9.8x1x2 + 2x1.

Table 18   Best results of different algorithms for the tubular column design problem

LEA NOA GJO AOS TSA SOA HHO RDPSO

x1 5.4522 5.4456 5.4532 5.4521 5.4543 5.4510 5.4509 5.4885
x2 0.2916 0.2937 0.2916 0.2916 0.2922 0.2918 0.2918 0.2897
g1 − 2.89E−14 − 9.44E−03 − 4.05E−05 − 5.94E−05 − 3.61E−03 − 7.82E−04 − 7.47E−04 − 2.64E−04
g2 − 1.78E−13 − 1.70E−01 − 1.96E−02 − 5.22E−05 − 1.44E−01 − 3.43E−03 − 8.19E−06 − 6.38E−01
g3 − 0.633174 −0.632734 − 0.633246 − 0.633168 − 0.633314 − 0.633096 − 0.633087 − 0.635601
g4 − 0.610559 − 0.611025 − 0.610482 − 0.610566 − 0.610410 − 0.610641 − 0.610651 − 0.607965
g5 − 0.314191 − 0.319057 − 0.314075 − 0.314229 − 0.315482 − 0.314674 − 0.314676 − 0.309739
g6 − 0.318477 − 0.319294 − 0.318344 − 0.318490 − 0.318217 − 0.318622 − 0.318639 − 0.313940
f 26.48636 26.56584 26.48889 26.48674 26.52587 26.49171 26.49109 26.56155

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

g1(x) =
P

�x1x2�y
− 1 ≤ 0,

g2(x) =
8PL2

�3Ex1x2
(
x2
1
+ x2

2

) − 1 ≤ 0,

g3(x) =
2

x1
− 1 ≤ 0,

g4(x) =
x1

14
− 1 ≤ 0,

g5(x) =
0.2

x2
− 1 ≤ 0,

g6(x) =
x1

8
− 1 ≤ 0

Fig. 22   Schematic diagram of the piston lever design problem

	 Y. Gao et al.

1 3

Variable range:
2 ≤ x1 ≤ 14 , 0.2 ≤ x2 ≤ 0.8.
As shown in Table 18, the best results of the optimization design problem for

the tubular column in different algorithms. Experiments show that the optimization
performance of the LEA outperforms the comparison algorithms. In particular, the
proposed algorithm finds the best solution better than the NOA and the RDPSO, and
performs similarly to and better than the GJO, the AOS, and the TSA.

5.6 � Piston lever design problem

The main objective of the design of piston lever problem is to determine the
parameters of the piston assembly during the lifting of the piston rod from 0° to
45°, so that the oil volume is minimized [93]. The position of the piston assembly
( H , B , D , and X ) is presented in Fig. 22, and its mathematical model can be
expressed as Eq. (27).

Consider:

Minimize:

Subject to:

� =
[
x1, x2, x3, x4

]
= [H,B,D,X].

(27)f (�) =
1

4
�x2

3

(
L2 − L1

)
.

g1(�) = QL cos � − R × F ≤ 0,

g2(�) = Q
(
L − x4

)
−Mmax ≤ 0,

g3(�) = 1.2
(
L2 − L1

)
− L1 ≤ 0,

g4(�) =
x3

2
− x2 ≤ 0.

Table 19   Best results of different algorithms for the piston lever design problem

LEA NOA GJO AOS TSA SOA HHO RDPSO

x1 0.05 2.25339 0.05 0.05009 0.05 0.05026 0.05 14.11759
x2 2.04162 20.91339 2.04254 2.04208 2.05720 2.04180 2.07417 18.52856
x3 4.08314 4.47145 4.08378 4.08390 4.08998 4.08302 4.10912 3.93935
x4 120 118.752 120 119.94 120 120 118.604 119.352
g1 − 98.92 − 801,591.77 − 644.56 − 27.35 − 6010.01 − 10.12 − 2606.14 − 581,343.39
g2 − 600,000 − 587,518.07 − 600,000 − 599,489.9 − 600,000 − 600,000 − 586,043.0 − 593,522.6
g3 − 117.1873 − 87.1167 − 117.1861 − 117.1356 − 117.1661 − 117.1869 − 115.7472 − 81.7720
g4 − 0.00005 − 18.67767 − 0.00065 − 0.00013 − 0.01221 − 0.00028 − 0.01962 − 16.55888
f 8.41361 140.64335 8.41988 8.41940 8.50355 8.41628 8.65278 203.49531

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

where

Variable range:
0.05 ≤ x1, x2, x4 ≤ 500 , 0.05 ≤ x3 ≤ 120.
The best results of the piston lever design problem optimized with different

algorithms are given in Table 19. From the experiments, it can be concluded
that the results of the LEA are ranked 1st while meeting the constraints. On this
problem, the LEA performs far better than the NOA, the TSA, the HHO, and the
RDPSO. Meanwhile, the GJO, the AOS, and the SOA showed similar results to
the LEA.

R =

|||−x4
(
x4 sin � + x1

)
+ x1

(
x2 − x4 cos �

)|||√(
x4 − x2

)2
+ x2

1

,

F =
�Px2

3

4
,

L1 =

√(
x4 − x2

)2
+ x2

1
,

L2 =

√(
x4 sin � + x1

)2
+
(
x2 − x4 cos �

)2
,

� = 45◦,

Q = 10000 lbs,

L = 240 in,

Mmax = 1.8 × 106 lbs in,

P = 1500 psi.

Fig. 23   Schematic diagram of the rolling element bearing design problem

	 Y. Gao et al.

1 3

Ta
bl

e 
20

  
B

es
t r

es
ul

ts
 o

f d
iff

er
en

t a
lg

or
ith

m
s f

or
 th

e
ro

lli
ng

 e
le

m
en

t b
ea

rin
g

de
si

gn
 p

ro
bl

em

LE
A

N
O

A
G

JO
A

O
S

TS
A

SO
A

H
H

O
R

D
PS

O

x 1
12

5.
71

90
12

5.
13

49
12

5.
70

66
12

5.
72

35
12

5.
65

64
12

5.
71

21
12

5.
71

84
12

6.
27

46
x 2

21
.4

25
5

19
.9

85
0

21
.4

18
9

21
.4

21
8

21
.3

58
5

21
.4

17
4

21
.4

25
4

20
.2

78
8

x 3
11

.2
80

0
10

.9
13

2
10

.9
84

7
10

.7
15

9
10

.9
76

8
11

.1
20

4
11

.4
31

4
11

.2
95

8
x 4

0.
51

5
0.

51
62

0.
51

5
0.

51
50

0.
51

5
0.

51
5

0.
51

5
0.

51
56

x 5
0.

51
50

0.
53

98
0.

55
16

0.
51

54
0.

55
67

0.
58

32
0.

51
53

0.
52

70
x 6

0.
42

90
0.

46
19

0.
49

58
0.

41
05

0.
5

0.
46

90
0.

49
98

0.
41

75
x 7

0.
69

90
0.

64
47

0.
63

12
0.

61
21

0.
7

0.
62

22
0.

69
96

0.
62

14
x 8

0.
3

0.
37

01
0.

3
0.

30
00

0.
3

0.
30

04
0.

3
0.

32
87

x 9
0.

03
10

0.
07

14
0.

02
20

0.
06

85
0.

02
0.

02
94

0.
02

24
0.

03
75

x 1
0

0.
60

13
0.

61
79

0.
65

94
0.

60
00

0.
6

0.
60

92
0.

60
17

0.
60

47
g 1

−
 0.

00
00

2
−

 0.
53

58
6

−
 0.

00
15

2
−

 0.
00

17
8

−
 0.

02
03

8
−

 0.
00

25
4

−
 0.

00
00

1
−

 0.
50

56
7

g 2
−

 12
.8

19
84

−
 7.

63
91

0
−

 8.
13

00
8

−
 14

.1
10

03
−

 7.
71

70
4

−
 10

.0
05

69
−

 7.
86

44
6

−
 11

.3
30

93
g 3

−
 6.

07
97

2
−

 5.
15

75
6

−
 1.

34
27

3
−

 0.
00

67
7

−
 6.

28
29

6
−

 0.
71

81
3

−
 6.

12
29

7
−

 2.
94

36
0

g 4
−

 8.
47

34
1

−
 17

.9
75

21
−

 6.
21

48
5

−
 17

.8
56

16
−

 5.
65

63
8

−
 8.

05
65

2
−

 6.
33

08
8

−
 10

.6
47

79
g 5

−
 7.

03
55

0
−

 17
.7

05
41

−
 4.

80
16

8
−

 16
.4

09
08

−
 4.

34
36

2
−

 6.
63

23
3

−
 4.

89
40

0
−

 8.
09

85
3

g 6
−

 0.
71

89
6

−
 0.

13
49

0
−

 0.
70

65
9

−
 0.

72
35

4
−

 0.
65

63
8

−
 0.

71
21

0
−

 0.
71

84
4

−
 1.

27
46

3
g 7

−
 0.

00
01

2
−

 0.
04

43
3

−
 0.

01
15

7
−

 0.
00

05
5

−
 0.

08
50

0
−

 0.
00

24
7

−
 0.

00
04

3
−

 0.
05

72
4

g 8
−

 3.
38

61
9

−
 1.

44
90

4
−

 1.
63

73
5

−
 3.

42
16

3
−

 3.
35

85
2

−
 3.

14
15

4
−

 3.
37

54
6

−
 2.

13
89

0
g 9

0
−

 1.
17

E−
03

0
−

 4.
07

E−
07

0
0

0
−

 5.
83

E−
04

g 1
0

−
 0.

00
00

5
−

 0.
02

48
3

−
 0.

03
65

9
−

 0.
00

04
2

−
 0.

04
16

8
−

 0.
06

81
9

−
 0.

00
02

9
−

 0.
01

19
8

f
85

,5
48

.6
16

8
73

,3
45

.1
09

8
85

,4
94

.0
33

0
85

,5
21

.8
27

4
85

,0
66

.2
63

1
85

,4
75

.6
91

8
85

,5
48

.1
07

8
76

,4
18

.3
80

4

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

5.7 � Rolling element bearing design problem

The goal of the rolling element bearing design problem is to maximize fatigue life
[94]. Moreover, fatigue life is closely related to its dynamic load carrying capacity.
The problem involves 10 decision variables and 9 constraints. The schematic dia-
gram of the rolling element bearing design is shown in Fig. 23, and its mathematical
expression is defined in Eq. (28).

Consider:

Maximum:

Subject to:

� =
[
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

]
=
[
Dm,Db, Z, fi, f0,KDmin,KDmax, �, e, �

]
.

(28)f (�) =

{
fc × Z2∕ 3 × D1.8

b
Db ≤ 25.4

3.647 × fc × Z2∕ 3 × D1.4

b
Db > 25.4

.

t

l L

h b

Fig. 24   Schematic diagram of the welded beam design problem

	 Y. Gao et al.

1 3

where

g1(x) = −
�0

2 arcsin
(
Db

/
Dm

) + Z − 1 ≤ 0,

g2(x) = −2Db + KDmin(D − d) ≤ 0,

g3(x) = −KDmax(D − d) + 2Db ≤ 0,

g4(x) = −Dm + (0.5 − e)(D + d) ≤ 0,

g5(x) = Dm − (0.5 + e)(D + d) ≤ 0,

g6(x) = −Dm + 0.5(D + d) ≤ 0,

g7(x) = −0.5
(
D − Dm − Db

)
+ �Db ≤ 0,

g8(x) = �B� − Db ≤ 0,

g9(x) = 0.515 − fi ≤ 0,

g10(x) = 0.515 − fo ≤ 0.

fc = 37.91
⎧

⎪

⎨

⎪

⎩

1 +
⎡

⎢

⎢

⎣

1.04
(

1 − �
1 + �

)1.72
(

fi
(

2fo − 1
)

fo
(

2fi − 1
)

)0.41
⎤

⎥

⎥

⎦

10∕ 3
⎫

⎪

⎬

⎪

⎭

−0.3

×

[

�0.3(1 − �)1.39

fo(1 + �)
1
3

]

×
[

2fi
2fi − 1

]0.41

,

�0 = 2� − 2 arccos
[

(D − d)∕ 2 − 3(T∕ 4)
]2 +

(

D∕ 2 − T∕ 4 − Db
)2 − (d∕ 2 + T∕ 4)2

2
[

(D − d)∕ 2 − 3(T∕ 4)
](

D∕ 2 − T∕ 4 − Db
) ,

T = D − d − 2Db, B� = 30, D = 160, d = 90, ri = r0 = 11.033.

Table 21   Best results of different algorithms for the welded beam design problem

LEA NOA GJO AOS TSA SOA HHO RDPSO

x1 0.20570 0.20710 0.20557 0.20577 0.20037 0.20399 0.19132 0.20305
x2 3.47153 3.73723 3.48002 3.47590 3.64637 3.51970 3.84924 3.42250
x3 9.03661 9.77945 9.03991 9.03217 8.96104 9.03675 8.94836 9.46263
x4 0.20573 0.22010 0.20581 0.20597 0.20982 0.20575 0.20981 0.20384
g1 − 1.39104 − 1635.95 − 23.1131 − 14.1106 − 76.6266 − 35.1355 − 0.67354 − 162.537
g2 − 0.14017 − 6056.72 − 33.9125 − 5.88963 − 86.5844 − 3.81050 − 0.29998 − 2386.44
g3 − 0.00003 − 0.01300 − 0.00024 − 0.00021 − 0.00945 − 0.00176 − 0.01849 − 0.00079
g4 − 3.39057 − 3.11585 − 3.38868 − 3.38908 − 3.35941 − 3.38687 − 3.34734 − 3.33771
g5 − 0.08070 − 0.08210 − 0.08057 − 0.08077 − 0.07537 − 0.07899 − 0.06632 − 0.07805
g6 − 0.23554 − 0.23934 − 0.23556 − 0.23554 − 0.23546 − 0.23554 − 0.23540 − 0.23729
g7 − 0.13959 − 1727.13 − 8.69591 − 19.38058 − 329.94 − 1.85256 − 323.08 − 12.4242
f 1.724961 2.013841 1.727101 1.726728 1.757961 1.728961 1.767866 1.772630

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

Variable range:
0.5(D + d) ≤ x1 ≤ 0.6(D + d) , 0.15(D − d) ≤ x2 ≤ 0.45(D − d) , 4 ≤ x3 ≤ 50 ,

0.515 ≤ x4, x5 ≤ 0.6 , 0.4 ≤ x6 ≤ 0.5 , 0.6 ≤ x7 ≤ 0.7 , 0.3 ≤ x8 ≤ 0.4 ,
0.02 ≤ x9 ≤ 0.1 , 0.6 ≤ x10 ≤ 0.85.

Table 20 shows the best results obtained by different algorithms for optimizing
this problem. It can be noted that the NOA and the RDPSO perform the worst on
this problem. Moreover, although all algorithms except for the NOA and the RDPSO
achieved good optimization results, LEA still came in first place, showing a strong
competition.

5.8 � Welded beam design problem

The welded beam design problem (Fig. 24) is an engineering problem that was
proposed by Coello and solved by many researchers using different methods [95].
The problem is constrained by seven conditions from stress, deflection, welding,
and geometry, and the objective is to find the minimum manufacturing cost of the
welded beam. The decision variables are weld thickness ( h ), height ( l ), length ( t ),
and crossbeam thickness ( b ). The objective function can be defined in Eq. (29).

Consider:

Minimize:

Subject to:

where

� =
[
x1, x2, x3, x4

]
= [h, l, t, b].

(29)f (�) = 1.10471x2
1
x2 + 0.04811x3x4

(
14 + x2

)
.

g1(x) = �(x) − �max ≤ 0,

g2(x) = �(x) − �max ≤ 0,

g3(x) = �(x) − �max ≤ 0,

g4(x) = x1 − x4 ≤ 0,

g5(x) = P − Pc(x) ≤ 0,

g6(x) = 0.125 − x1 ≤ 0,

g7(x) = 1.10471x2
1
+ 0.04811x3x4

(
14.0 + x2

)
− 5.0 ≤ 0.

	 Y. Gao et al.

1 3

Variable range:
0.1 ≤ x1, x4 ≤ 2 , 0.1 ≤ x2, x3 ≤ 10.
The best results of the welded beam design problem optimized with different

algorithms are given in Table 21. From the experimental results, it is concluded that
the LEA ranks 1st when the constraints are satisfied. The LEA performs much better
than the NOA on this problem. In addition, the LEA shows a slight advantage over
the TSA, the HHO, and the RDPSO. Meanwhile, a host of algorithms such as GJO,
AOS, and SOA compared to it showed similar results to the LEA.

6 � Conclusion

In this paper, an evolutionary algorithm inspired by the stimulus–value–role
theory called Love Evolution Algorithm (LEA) was proposed. The proposed
algorithm abstracts human characteristics (e.g., temperament, personality,

�(x) =

�
(��)2 + 2�����

x2

2R
+ (���)2,

�� =
P√
2x1x2

,

��� = MR∕J,

M = P
�
L + x2∕2

�
,

R =

�
x2
2

4
+

�
x1 + x3

2

�2

,

J = 2

�√
2x1x2

�
x2
2

4
+

�
x1 + x3

2

�2
��

,

�(x) =
6PL

x4x
2
3

,

�(x) =
6PL3

Ex2
3
x4
,

Pc(x) =
4.013Ex3x

3
4

�
6

L2

�
1 −

x3

2L

�
E

4G

�
,

P = 6000 lb,

L = 14 in,

�max = 0.25 in,

E = 30 × 106 psi,

G = 12 × 106 psi,

�max = 13600 psi,

�max = 30000 psi

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

hobbies, etc.) into solutions and happiness in relationships into objective func-
tion values. In addition, the LEA includes three phases: the stimulus phase, the
value phase, and the role phase. The goal of the LEA is to enhance the charac-
teristics of both partners in a relationship through mutual learning and bonding
between the two people in the relationship, thus enhancing the happiness of
both partners.

This paper verified the optimization performance of the LEA using the CEC2017
and CEC2022 benchmark test sets. Seven recent and excellent metaheuristic algo-
rithms were compared with the LEA on the CEC2017 benchmark functions. These
algorithms include the NOA, the GJO, the AOS, the TSA, the SOA, the HHO, and
the RDPSO. Then, Wilcoxon signed-rank test and Friedman test were performed
for the optimization results of the LEA and the competitors on the CEC2017 bench-
mark functions. In addition, the LEA and seven state-of-the-art metaheuristic algo-
rithms were used to optimize the CEC2022 benchmark functions to validate the
strong competitiveness of the LEA through comparisons. These seven state-of-the-
art metaheuristics are L-SHADE, AL-SHADE, L-SHADE-spacma, AFDB-ARO,
FDB-AGDE, FDB-AGSK, and FDB-PPSO. Moreover, time complexity analysis,
convergence analysis, and scalability analysis were performed. Afterward, the LEA
was used to solve eight real-world optimization problems to verify the capability of
the LEA to solve engineering problems. These eight real-world optimization prob-
lems include the speed reducer design problem, the pressure vessel design problem,
the cantilever beam design problem, the I-beam design problem, the tubular column
design problem, the piston lever design problem, the rolling element bearing design
problem, and the welded beam design problem. The core results obtained from this
study are summarized as follows:

(1)	 The time complexity of the LEA is not dominant compared to the competitors
(CEC2017 benchmark set), but it is feasible.

(2)	 The LEA achieves similar results to the state-of-the-art algorithms on the
CEC2022 benchmark functions, validating the stronger competitiveness of the
LEA.

(3)	 The LEA is able to exhibit different optimization behaviors on the CEC2022
benchmark functions.

(4)	 The LEA converges significantly faster on F1, F3, F5~F10, F12, F18, F19, F22,
and F30 (CEC2017 benchmark set) compared to the competitors.

(5)	 The p-values obtained from the Wilcoxon signed-rank test are mostly less than
0.05, indicating that there is a significant difference between the results of LEA
and those of the competitors.

(6)	 On the Friedman test, the LEA ranks 2nd on F11 and F24, and 1st on the remain-
ing functions; and the final rank of the LEA is 1st.

(7)	 The LEA shows strong scalability on most functions of the CEC2017 benchmark
set.

(8)	 The LEA demonstrates good optimization capabilities for real-world optimiza-
tion problems.

	 Y. Gao et al.

1 3

The proposed LEA provides some new search operations. From the results of this
paper, it can be concluded that the LEA has a large research prospect. In the future,
other valuable research based on this study includes:

(1)	 Provide a multi-objective optimization version of the LEA.
(2)	 Discuss the applications of the LEA to discrete-valued and binary optimization

problems.
(3)	 Prove theoretically the convergence of the LEA.
(4)	 Propose improved LEA in terms of population initialization (e.g., chaotic map-

ping), selection of a guided individual (e.g., the fitness–distance balance), bal-
ance between exploration and exploitation (e.g., parameters or new search opera-
tions), and update mechanisms (e.g., the natural survivor method).

(5)	 Propose fusion algorithms with better performance by fusing LEA and other
metaheuristics.

(6)	 Propose improved versions of the LEA for constrained engineering problems
(e.g., the fitness–distance–constraint).

(7)	 Apply the LEA to different real-world optimization problems.

Acknowledgements  This work was supported in part by the College Students’ Innovative Entrepreneur-
ial Training Plan Program (Project Number: X202310147035).

Author contributions  YG was involved in conceptualization, methodology, software, writing—original
draft, writing—reviewing and editing, and visualization. JZ was responsible for writing—original draft,
data curation, writing—reviewing and editing, and visualization. YW contributed to validation, data
curation, and writing—original draft. JW took part in validation, writing—original draft, and writing—
reviewing and editing. LQ participated in validation, investigation, and writing—original draft.

Data availability  No data were used for the research described in the paper.

Declarations 

Conflict of interest  The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

	 1.	 Wu G (2016) Across neighborhood search for numerical optimization. Inf Sci 329:597–618
	 2.	 Wu G, Pedrycz W, Suganthan PN, Mallipeddi R (2015) A variable reduction strategy for evolution-

ary algorithms handling equality constraints. Appl Soft Comput 37:774–786
	 3.	 Wong WK, Ming CI (2019) A review on metaheuristic algorithms: recent trends, benchmarking and

applications. In 2019 7th international conference on smart computing & communications (ICSCC).
IEEE, pp 1–5

	 4.	 Malik A, Tikhamarine Y, Souag-Gamane D, Kisi O, Pham QB (2020) Support vector regression
optimized by meta-heuristic algorithms for daily streamflow prediction. Stoch Env Res Risk Assess
34(11):1755–1773

	 5.	 Gao Y, Li C, Huang L (2022) An improved deep extreme learning machine to predict the remaining
useful life of lithium-ion battery. Front Energy Res 10:1032660

	 6.	 Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1(1):67–82

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

	 7.	 Murstein BI (1970) Stimulus. Value. Role: a theory of marital choice. J Marriage Fam 465–481
	 8.	 Ma Z, Wu G, Suganthan PN, Song A, Luo Q (2023) Performance assessment and exhaustive listing

of 500+ nature-inspired metaheuristic algorithms. Swarm Evol Comput 77:101248
	 9.	 Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science

220(4598):671–680
	10.	 Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput

Oper Res 13(5):533–549
	11.	 Voudouris C, Tsang EP, Alsheddy A (2010) Guided local search. In: Handbook of metaheuristics.

Springer, Boston, pp 321–361
	12.	 Lourenço HR, Martin OC, Stützle T (2019) Iterated local search: framework and applications.

Handbook of metaheuristics, pp 129–168
	13.	 Rastrigin LA (1963) The convergence of the random search method in the extremal control of a

many parameter system. Autom Remote Control 24:1337–1342
	14.	 Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res

24(11):1097–1100
	15.	 Pisinger D, Ropke S (2019) Large neighborhood search. Handbook of metaheuristics, pp 99–127
	16.	 Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73
	17.	 Fogel DB (1998) Artificial intelligence through simulated evolution. Wiley-IEEE Press, pp 227–296
	18.	 Ingo R (1973) Evolution strategy: optimization of technical systems by means of biological evolu-

tion, vol 104. Fromman-Holzboog, Stuttgart, p 15
	19.	 Koza JR (1994) Genetic programming as a means for programming computers by natural selection.

Stat Comput 4:87–112
	20.	 Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimiza-

tion over continuous spaces. J Global Optim 11:341–359
	21.	 Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems.

Preprint https://​arxiv.​org/​abs/​cs/​01020​27
	22.	 Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713
	23.	 Civicioglu P (2012) Transforming geocentric Cartesian coordinates to geodetic coordinates by using

differential search algorithm. Comput Geosci 46:229–247
	24.	 Motevali MM, Shanghooshabad AM, Aram RZ, Keshavarz H (2019) WHO: a new evolutionary

algorithm bio-inspired by wildebeests with a case study on bank customer segmentation. Int J Pat-
tern Recognit Artif Intell 33(05):1959017

	25.	 Veysari EF (2022) A new optimization algorithm inspired by the quest for the evolution of human
society: human felicity algorithm. Expert Syst Appl 193:116468

	26.	 Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating
agents. IEEE Trans Syst Man Cybern Part B (cybern) 26(1):29–41

	27.	 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-interna-
tional conference on neural networks, vol 4. IEEE, pp 1942–1948

	28.	 Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE
Control Syst Mag 22(3):52–67

	29.	 Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm.
Knowl-Based Syst 89:228–249

	30.	 Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
	31.	 Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic

technique for engineering applications. Adv Eng Softw 114:48–70
	32.	 Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization.

Soft Comput 23:715–734
	33.	 Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization:

algorithm and applications. Future Gener Comput Syst 97:849–872
	34.	 Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate swarm algorithm: a new bio-inspired

based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541
	35.	 Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm:

a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng
158:107408

	36.	 Hashim FA, Hussien AG (2022) Snake optimizer: a novel meta-heuristic optimization algorithm.
Knowl-Based Syst 242:108320

https://arxiv.org/abs/cs/0102027

	 Y. Gao et al.

1 3

	37.	 Braik M, Hammouri A, Atwan J, Al-Betar MA, Awadallah MA (2022) White shark optimizer: a
novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl-Based Syst
243:108457

	38.	 Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput
Methods Appl Mech Eng 391:114570

	39.	 Zervoudakis K, Tsafarakis S (2022) A global optimizer inspired from the survival strategies of fly-
ing foxes. Eng Comput 1–34

	40.	 Shahrouzi M, Kaveh A (2022) An efficient derivative-free optimization algorithm inspired by avian
life-saving manoeuvres. J Comput Sci 57:101483

	41.	 Mohammed H, Rashid T (2023) FOX: a FOX-inspired optimization algorithm. Appl Intell
53(1):1030–1050

	42.	 Han M, Du Z, Yuen K, Zhu H, Li Y, Yuan Q (2023) Walrus optimizer: a novel nature-inspired
metaheuristic algorithm. Expert Syst Appl 122413

	43.	 Tian AQ, Liu FF, Lv HX (2023) Snow geese algorithm: a novel migration-inspired meta-heuristic
algorithm for constrained engineering optimization problems. Appl Math Model

	44.	 Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw
37(2):106–111

	45.	 Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci
179(13):2232–2248

	46.	 Lam AY, Li VO (2009) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol
Comput 14(3):381–399

	47.	 Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimiza-
tion. Expert Syst Appl 38(10):13170–13180

	48.	 Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci
222:175–184

	49.	 Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for
global optimization. Neural Comput Appl 27(2):495–513

	50.	 Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange opti-
mization. Adv Eng Softw 110:69–84

	51.	 Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2021) Archimedes optimi-
zation algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell
51:1531–1551

	52.	 Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimi-
zation algorithm. Knowl-Based Syst 191:105190

	53.	 Rodriguez L, Castillo O, Garcia M, Soria J (2021) A new meta-heuristic optimization algorithm
based on a paradigm from physics: string theory. J Intell Fuzzy Syst 41(1):1657–1675

	54.	 Azizi M (2021) Atomic orbital search: a novel metaheuristic algorithm. Appl Math Model
93:657–683

	55.	 Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based
Syst 96:120–133

	56.	 Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic
optimization algorithm. Inf Sci 540:131–159

	57.	 Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H (2021) RUN beyond the metaphor: an
efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl 181:115079

	58.	 Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization
algorithm. Comput Methods Appl Mech Eng 376:113609

	59.	 Ahmadianfar I, Heidari AA, Noshadian S, Chen H, Gandomi AH (2022) INFO: an efficient optimi-
zation algorithm based on weighted mean of vectors. Expert Syst Appl 195:116516

	60.	 Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: a
new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell
94:103731

	61.	 Gao Y (2023) PID-based search algorithm: a novel metaheuristic algorithm based on PID algo-
rithm. Expert Syst Appl 120886

	62.	 Musa Z, Ibrahim Z, Shapiai MI, Tsuboi Y (2023) Cubature Kalman optimizer: a novel metaheuris-
tic algorithm for solving numerical optimization problems. J Adv Res Appl Sci Eng Technol
33(1):333–355

	63.	 Ozer AB (2010) CIDE: chaotically initialized differential evolution. Expert Syst Appl
37(6):4632–4641

1 3

Love Evolution Algorithm: a stimulus–value–role theory‑inspired…

	64.	 Kazimipour B, Li X, Qin AK (2014) A review of population initialization techniques for evolution-
ary algorithms. In: 2014 IEEE congress on evolutionary computation (CEC). IEEE, pp 2585–2592

	65.	 Kahraman HT, Aras S, Gedikli E (2020) Fitness-distance balance (FDB): a new selection method
for meta-heuristic search algorithms. Knowl-Based Syst 190:105169

	66.	 Ozkaya B, Kahraman HT, Duman S, Guvenc U (2023) Fitness-distance-constraint (FDC) based
guide selection method for constrained optimization problems. Appl Soft Comput 110479

	67.	 Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE (1996) Lévy
flight search patterns of wandering albatrosses. Nature 381(6581):413–415

	68.	 Pearson K (1905) The problem of the random walk. Nature 72(1865):294–294
	69.	 Liu W, Wang Z, Yuan Y, Zeng N, Hone K, Liu X (2019) A novel sigmoid-function-based adaptive

weighted particle swarm optimizer. IEEE Trans Cybern 51(2):1085–1093
	70.	 Pan JS, Lv JX, Yan LJ, Weng SW, Chu SC, Xue JK (2022) Golden eagle optimizer with dou-

ble learning strategies for 3D path planning of UAV in power inspection. Math Comput Simul
193:509–532

	71.	 Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear pop-
ulation size reduction. In: 2014 IEEE congress on evolutionary computation (CEC). IEEE, pp
1658–1665

	72.	 Kahraman HT, Katı M, Aras S, Taşci DA (2023) Development of the natural survivor method
(NSM) for designing an updating mechanism in metaheuristic search algorithms. Eng Appl Artif
Intell 122:106121

	73.	 Wu G, Mallipeddi R, Suganthan PN (2017) Problem definitions and evaluation criteria for the CEC
2017 competition on constrained real-parameter optimization. National University of Defense Tech-
nology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and
Nanyang Technological University, Singapore, Technical Report

	74.	 Biedrzycki R, Arabas J, Warchulski E (2022) A version of NL-SHADE-RSP algorithm with mid-
point for CEC 2022 single objective bound constrained problems. In: 2022 IEEE congress on evolu-
tionary computation (CEC). IEEE, pp 1–8

	75.	 Abdel-Basset M, Mohamed R, Jameel M, Abouhawwash M (2023) Nutcracker optimizer: a novel
nature-inspired metaheuristic algorithm for global optimization and engineering design problems.
Knowl-Based Syst 262:110248

	76.	 Chopra N, Ansari MM (2022) Golden jackal optimization: a novel nature-inspired optimizer for
engineering applications. Expert Syst Appl 198:116924

	77.	 Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-
scale industrial engineering problems. Knowl-Based Syst 165:169–196

	78.	 Sun J, Palade V, Wu XJ, Fang W, Wang Z (2013) Solving the power economic dispatch problem
with generator constraints by random drift particle swarm optimization. IEEE Trans Industr Inf
10(1):222–232

	79.	 Li Y, Han T, Zhou H, Tang S, Zhao H (2022) A novel adaptive L-SHADE algorithm and its applica-
tion in UAV swarm resource configuration problem. Inf Sci 606:350–367

	80.	 Mohamed AW, Hadi AA, Fattouh AM, Jambi KM (2017) LSHADE with semi-parameter adaptation
hybrid with CMA-ES for solving CEC 2017 benchmark problems. In: 2017 IEEE congress on evo-
lutionary computation (CEC). IEEE, pp 145–152

	81.	 Bakır H (2023) Fitness-distance balance-based artificial rabbits optimization algorithm to solve
optimal power flow problem. Expert Syst Appl 122460

	82.	 Guvenc U, Duman S, Kahraman HT, Aras S, Katı M (2021) Fitness-distance balance based adaptive
guided differential evolution algorithm for security-constrained optimal power flow problem incor-
porating renewable energy sources. Appl Soft Comput 108:107421

	83.	 Bakır H, Duman S, Guvenc U, Kahraman HT (2023) Improved adaptive gaining-sharing knowl-
edge algorithm with FDB-based guiding mechanism for optimization of optimal reactive power flow
problem. Electr Eng 1–40

	84.	 Duman S, Kahraman HT, Korkmaz B, Bakir H, Guvenc U, Yilmaz C (2021) Improved Phasor parti-
cle swarm optimization with fitness distance balance for optimal power flow problem of hybrid AC/
DC power grids. In: The international conference on artificial intelligence and applied mathematics
in engineering. Springer, Cham, pp 307–336

	85.	 Morales-Castañeda B, Zaldivar D, Cuevas E, Fausto F, Rodríguez A (2020) A better balance in
metaheuristic algorithms: Does it exist? Swarm Evol Comput 54:100671

	86.	 Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:196–202

	 Y. Gao et al.

1 3

	87.	 Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. J Am Stat Assoc 32(200):675–701

	88.	 Sattar D, Salim R (2021) A smart metaheuristic algorithm for solving engineering problems. Eng
Comput 37(3):2389–2417

	89.	 Sandgren E (1990) NIDP in mechanical design optimization. J Mech Design 112(2):223–229
	90.	 Chickermane HEMIANT, Gea HC (1996) Structural optimization using a new local approximation

method. Int J Numer Meth Eng 39(5):829–846
	91.	 Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to

solve structural optimization problems. Eng Comput 29:17–35
	92.	 Bayzidi H, Talatahari S, Saraee M, Lamarche CP (2021) Social network search for solving engineer-

ing optimization problems. Comput Intell Neurosci 2021:1–32
	93.	 Rao SS (2019) Engineering optimization: theory and practice. Wiley
	94.	 Gupta S, Tiwari R, Nair SB (2007) Multi-objective design optimisation of rolling bearings using

genetic algorithms. Mech Mach Theory 42(10):1418–1443
	95.	 Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems.

Comput Ind 41(2):113–127

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Love Evolution Algorithm: a stimulus–value–role theory-inspired evolutionary algorithm for global optimization
	Abstract
	1 Introduction
	2 Related studies
	2.1 Classification of metaheuristic algorithms
	2.2 Basic elements of metaheuristic algorithms

	3 Love Evolution Algorithm
	3.1 Inspiration
	3.1.1 Stimulus-value-role theory
	3.1.2 Abstractions and metaphors

	3.2 Mathematical model and algorithm
	3.2.1 Initialization
	3.2.2 Encounter
	3.2.3 Stimulus phase
	3.2.4 Reflection operation
	3.2.5 Value phase
	3.2.6 Adaptation degree
	3.2.7 Role phase
	3.2.8 Update of the population

	3.3 Theoretical analysis of time and space complexity

	4 Experimental results and discussion
	4.1 Experimental setup
	4.2 Performance comparison
	4.2.1 Exploitation and exploration
	4.2.2 Capability of avoiding locally optimal solutions
	4.2.3 Capability of finding optimal solutions
	4.2.4 Time complexity analysis
	4.2.5 Comparison with strong algorithms

	4.3 Convergence analysis
	4.4 Statistical tests
	4.5 Scalability analysis

	5 Applications to real-world optimization problems
	5.1 Speed reducer design problem
	5.2 Pressure vessel design problem
	5.3 Cantilever beam design problem
	5.4 I-beam design problem
	5.5 Tubular column design problem
	5.6 Piston lever design problem
	5.7 Rolling element bearing design problem
	5.8 Welded beam design problem

	6 Conclusion
	Acknowledgements
	References

